首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities
【2h】

Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities

机译:微盘腔中氮化铟镓量子点激光的显着特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low-threshold lasers realized within compact, high-quality optical cavities enable a variety of nanophotonics applications. Gallium nitride materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light−matter interactions and realize practical devices such as efficient light-emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low-threshold lasers have not been clearly demonstrated. This work seeks to better understand the reasons for these limitations by focusing on the simpler, limited-mode microdisk cavities, and by carrying out comparisons of lasing dynamics in those cavities using varying gain media including InGaN quantum wells, fragmented quantum wells, and a combination of fragmented quantum wells with quantum dots. For each gain medium, we use the distinctive, high-quality (Q∼5,500) modes of the cavities, and the change in the highest-intensity mode as a function of pump power to better understand the dominant radiative processes. The variations of threshold power and lasing wavelength as a function of gain medium help us identify the possible limitations to lower-threshold lasing with quantum dot active medium. In addition, we have identified a distinctive lasing signature for quantum dot materials, which consistently lase at wavelengths shorter than the peak of the room temperature gain emission. These findings not only provide better understanding of lasing in nitride-based quantum dot cavity systems but also shed insight into the more fundamental issues of light−matter coupling in such systems.
机译:在紧凑,高质量的光腔内实现的低阈值激光器可实现各种纳米光子学应用。包含氮化铟镓(InGaN)量子点和量子阱的氮化镓材料提供了一个出色的平台,用于研究光与物质的相互作用并实现实用的设备,例如高效的发光二极管和纳米激光。尽管在InGaN量子点的生长和表征方面取得了进展,但尚未明确证明它们作为低阈值激光器中的增益介质的优势。这项工作旨在通过专注于更简单,有限模式的微腔,并使用包括InGaN量子阱,碎片化量子阱及其组合在内的不同增益介质对这些腔中的激光动力学进行比较,从而更好地理解这些限制的原因。带有量子点的零碎量子阱对于每种增益介质,我们使用腔体的独特,高质量(Q〜5,500)模式以及最高强度模式的变化作为泵浦功率的函数,以更好地理解主要的辐射过程。阈值功率和激射波长随增益介质变化的变化有助于我们确定使用量子点有源介质进行下阈值激射的可能限制。此外,我们还为量子点材料确定了独特的激射特征,该特征在波长小于室温增益发射峰的波长处持续发射。这些发现不仅可以更好地理解基于氮化物的量子点腔系统中的激光,而且还可以洞察此类系统中更基本的光-质耦合问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号