首页> 外文学位 >Facilitation of motor and bladder function after spinal cord injury via epidural stimulation and pharmacology.
【24h】

Facilitation of motor and bladder function after spinal cord injury via epidural stimulation and pharmacology.

机译:通过硬膜外刺激和药理作用促进脊髓损伤后的运动和膀胱功能。

获取原文
获取原文并翻译 | 示例

摘要

A complete spinal cord transection results in loss of all supraspinal motor and bladder control below the level of the injury. The neural circuitry in the lumbosacral spinal cord, however, can generate locomotor patterns in the hindlimbs of rats and cats with the aid of motor training, epidural stimulation and/or administration of monoaminergic agonists. Gerasimenko et al., (2003) first reported the use of electrical stimulation to facilitate locomotion in chronic decerebrated cats. Ichiyama et al (2005) then demonstrated that epidural electrical stimulation of the spinal cord can induce rhythmic, alternating hindlimb locomotor activity in chronic spinal rats. Stimulation at the L2 spinal segment at frequencies between 30 and 50 Hz consistently produced successful bilateral stepping. Similar epidural stimulation at other spinal segments were less effective, e.g., epidural stimulation at the T13 or L1 evoked rhythmic activity in only one leg and stimulation at the L3, L4, or L5 produced mainly flexion movements.;More recently, completely paralyzed (motor complete, sensory incomplete) human subjects were implanted with a commercially available spinal cord electrode array and stimulation package originally designed for pain suppression (Harkema et al., 2011). Stimulation of specific spinal segments (caudal electrodes, ∼ S1 spinal level) in combination with the sensory information from the lower limbs and weeks of stand training was sufficient to generate full weight-bearing standing. These subjects also recovered some voluntary control of movements of the toe, ankle, and the entire lower limb, but only when epidural stimulation was present. Thus it appears that the epidural stimulation provided excitation of lumbosacral interneurons and motoneurons that, when combined with the weak excitatory activity of descending axons that were not otherwise detectable, achieved a level of excitation that was sufficient to activate the spinal motor circuits. These results demonstrate that some patients clinically diagnosed as having complete paralysis can use proprioceptive input combined with some synaptic input from descending motor signals, perhaps residual but functionally silent without epidural stimulation to the spinal motor circuits to generate and control a range of motor functions during epidural stimulation.;The mechanisms of pharmacological and/or epidural electrical stimulation that enable motor control (eEmc) in the spinal circuitry for locomotion are still not clearly understood. During standing, a single bipolar epidural stimulus between L2 and S1 produces three types of evoked responses, i.e., early (ER, latency 1-3 ms), middle (MR, latency 4-6 ms), and late (LRs, latency >7 ms) in the hindlimb muscles in both intact (Gerasimenko et al., 2006) and spinal (Lavrov et al., 2006) rats. Similar responses were observed during rhythmic locomotor-like EMG activity in the hindlimb muscles of spinal rats while stepping on a motorized treadmill in the presence of epidural stimulation (40 Hz) between L2 and S1 (Lavrov et al., 2008). In addition, the time course of the re-emergence of the LRs was similar to that for the recovery of stepping after a complete spinal cord injury (SCI), indicating that LRs are a potential biomarker of functional recovery (Lavrov et al., 2006).;The results demonstrate that spinal rats can stand and step when the spinal cord is stimulated (tonic 40 Hz stimulation) by electrodes located at specific sites on the spinal cord and at specific frequencies of stimulation. The quality of stepping and standing was dependent on the location of the electrodes on the spinal cord, the specific stimulation parameters, and the orientation of the cathode and anode. spinal cord stimulation triggered evoked potentials in flexor and extensors muscles form a 'foot print' of the physiological state of the spinal cord. Chronic subthreshold stimulation enabled greater activity in completely transected rats but only with stimulation. Spinal cord stimulation at specific frequencies resulted in partial bladder control.
机译:完整的脊髓横断会导致低于损伤水平的所有脊髓上运动和膀胱控制丧失。但是,腰spin脊髓的神经回路可以通过运动训练,硬膜外刺激和/或单胺能激动剂的给药在大鼠和猫的后肢产生运动模式。 Gerasimenko等人(2003年)首次报道了使用电刺激促进慢性去脑猫的运动。 Ichiyama等人(2005年)随后证明,硬膜外电刺激脊髓可在慢性脊髓大鼠中诱发节律性,交替性的后肢运动功能。在L2脊柱节段以30到50 Hz的频率进行刺激,始终成功地完成了双侧步进。其他脊柱节段的类似硬膜外刺激效果较差,例如,T13或L1处的硬膜外刺激仅引起一条腿的节律活动,而L3,L4或L5处的刺激主要产生屈曲运动。最近,完全瘫痪(运动完全,感觉不完整的人类受试者被植入市售的脊髓电极阵列和最初设计用于镇痛的刺激包(Harkema等,2011)。刺激特定的脊柱节段(尾电极,〜S1脊柱水平),结合下肢的感觉信息和站立训练的几周,足以产生完全的负重站立。这些受试者还恢复了对脚趾,脚踝和整个下肢运动的一些自愿控制,但是只有在存在硬膜外刺激时才如此。因此,硬膜外刺激似乎提供了腰s神经元和运动神经元的刺激,再加上下降轴突的弱兴奋性活性(否则无法检测到),则达到了足以激活脊髓运动回路的兴奋水平。这些结果表明,一些临床诊断为完全瘫痪的患者可以使用本体感受输入和来自下降运动信号的一些突触输入相结合,也许是残余的但功能上无声,而没有硬膜外刺激脊髓运动回路,从而在硬膜外产生和控制一系列运动功能尚不清楚药理学和/或硬膜外电刺激的机制,该机制能够使脊髓回路中的运动控制(eEmc)运动。在站立期间,L2和S1之间的单个双极硬膜外刺激会产生三种类型的诱发反应,即早期(ER,潜伏期1-3 ms),中级(MR,潜伏期4-6 ms)和晚期(LR,潜伏期>完整大鼠(Gerasimenko et al。,2006)和脊柱动物(Lavrov et al。,2006)的后肢肌肉中大约7 ms)。在L2和S1之间存在硬膜外刺激(40 Hz)的情况下,踩踏机动跑步机时,在脊髓大鼠后肢的节律性运动样肌电活动中观察到了类似的反应(Lavrov等,2008)。此外,LRs重新出现的时间过程与完全性脊髓损伤(SCI)后步进恢复的时间过程相似,表明LRs是功能恢复的潜在生物标志物(Lavrov等,2006)。结果表明,当位于脊髓特定部位和特定刺激频率的电极刺激脊髓(张力40 Hz刺激)时,脊髓大鼠可以站立和行走。踩踏和站立的质量取决于脊髓上电极的位置,特定的刺激参数以及阴极和阳极的方向。脊髓刺激触发了屈肌和伸肌的诱发电位,形成了脊髓生理状态的“足迹”。慢性阈下刺激可以使完全横断的大鼠具有更大的活动能力,但只能通过刺激。特定频率的脊髓刺激导致部分膀胱控制。

著录项

  • 作者

    Gad, Parag.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Biomedical.;Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 194 p.
  • 总页数 194
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:43

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号