首页> 外文学位 >Asynchronous Hierarchical Parallel Evolutionary Algorithm-Based Framework for Water Distribution Systems Analysis.
【24h】

Asynchronous Hierarchical Parallel Evolutionary Algorithm-Based Framework for Water Distribution Systems Analysis.

机译:基于异步分层并行进化算法的配水系统分析框架。

获取原文
获取原文并翻译 | 示例

摘要

Water distribution systems (WDSs) are vulnerable to accidental and intentional contamination that can have serious effect on the public health. Accurate characterization of the contaminant source is usually the first step in designing a response strategy for control and containment of the contaminant during an event. Contaminants can spread quickly in the network due to complex hydraulic conditions requiring a procedure for near real-time identification of the source characteristics and design of response strategy. Limitations associated with the quality and quantity of network monitoring data, unknown nature of the contaminant and its interaction with other chemicals in the water, complexity of the network, and inherent uncertainties make contaminant source characterization a difficult and challenging problem to solve. Solution of source characterization problems requires iterative simulations of flow and transport, which are highly computing intensive posing a computational challenge for near real-time solution of the problem.;This research focuses on the development and demonstration of a computational framework for real-time contamination threat management in water distribution systems. Methodologies for contaminant source identification and characterization are developed. An array of contamination scenarios is explored and simulation-optimization-based methodologies are developed to address the source characterization problems. Effects of quality and quantity of available continuous as well as filtered water quality sensor data are studied. The methodologies are tested and evaluated under various conditions of noise and uncertainties in the data. Contamination scenarios involving reactive contaminants are also studied to characterize the source using routinely monitored chlorine levels as surrogate for detection and identification. The uncertainties in the problem due to unknown reaction kinetics of the contaminant in the system are investigated and methodologies for source characterization under the conditions of such uncertainties and noise in the system are examined. These methods are applied and tested for an array of contamination scenarios in two different example networks. To enable a near real-time solution, a massively parallel computational framework is developed for modern shared/distributed memory architecture-based parallel computers. This includes the development of a new Asynchronous Hierarchical Parallel Evolutionary Algorithm (AHPEA) to solve complex large-scale global optimization problems. Performance and robustness of AHPEA algorithm is tested using a suite of benchmark function optimization problems and its application to address water distribution contaminant threat management problems is demonstrated. A WDS simulation model and the optimization methodologies are fully integrated into the computational framework for real-time analysis of the system. The computational framework is tested for parallel performance and scaling on different state-of-the-art parallel computers.;The simulation-optimization framework developed in this research is successfully able to address the WDS contamination threat management problem by narrowing down the potential source location to a small set of concentrated nodes in the network. This is shown for different conditions of data availability, noise and uncertainties, as well as for reactive as well as non-reactive contaminants. Issue of non-uniqueness in the solution is addressed by identifying all possible solutions. A near real-time solution of the problem is enabled by this framework through efficient use of computational resources. The efficient and scalable framework developed in this dissertation research provides a robust tool that can be applied to solve large-scale complex engineering design problems in general.
机译:供水系统(WDS)容易受到意外污染和故意污染,可能会严重影响公共健康。准确表征污染物源通常是设计事件过程中控制和控制污染物的响应策略的第一步。由于复杂的水力条件,污染物可能会迅速在网络中传播,这需要一个用于近实时识别源特征和响应策略设计的程序。与网络监控数据的质量和数量相关的局限性,污染物的未知性质及其与水中其他化学物质的相互作用,网络的复杂性以及固有的不确定性,使得污染物源的表征成为难以解决的难题。解决源特征问题需要对流动和运输进行迭代模拟,这是高度计算密集型工作,对问题的近实时解决提出了计算挑战。;本研究致力于实时污染的计算框架的开发和演示。供水系统中的威胁管理。开发了用于污染物源识别和表征的方法。探索了一系列污染情景,并开发了基于仿真优化的方法来解决污染源表征问题。研究了可用连续水量和过滤水质量传感器数据的质量和数量的影响。在各种噪声和数据不确定性条件下对方法进行测试和评估。还研究了涉及反应性污染物的污染场景,以使用常规监测的氯水平作为检测和鉴定的替代物来表征污染源。研究了由于系统中污染物的未知反应动力学而导致的问题中的不确定性,并研究了在这种不确定性和系统噪声条件下表征源的方法。在两个不同的示例网络中,针对一系列污染场景应用并测试了这些方法。为了实现近乎实时的解决方案,为基于共享/分布式内存架构的现代并行计算机开发了大规模并行计算框架。这包括开发新的异步分层并行演化算法(AHPEA),以解决复杂的大规模全局优化问题。使用一组基准函数优化问题测试了AHPEA算法的性能和鲁棒性,并演示了其在解决水分配污染物威胁管理问题中的应用。 WDS仿真模型和优化方法已完全集成到用于实时分析系统的计算框架中。该计算框架已在不同的最新并行计算机上进行了并行性能和可扩展性测试;该研究开发的模拟优化框架通过缩小潜在源位置,成功地解决了WDS污染威胁管理问题到网络中一小部分集中的节点。对于数据可用性,噪声和不确定性的不同条件,以及反应性和非反应性污染物,均显示出这种情况。解决方案中的非唯一性问题可通过识别所有可能的解决方案来解决。通过有效利用计算资源,此框架可实现问题的近实时解决方案。本文研究开发的高效,可扩展的框架提供了一个强大的工具,可用于解决一般情况下的大型复杂工程设计问题。

著录项

  • 作者

    Kumar, Jitendra.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Civil.;Computer Science.;Operations Research.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号