首页> 外文学位 >Wind turbine controls for farm and offshore operation.
【24h】

Wind turbine controls for farm and offshore operation.

机译:用于农场和海上作业的风力发电机控制。

获取原文
获取原文并翻译 | 示例

摘要

Development of advanced control techniques is a critical measure for reducing the cost of energy for wind power generation, in terms of both enhancing energy capture and reducing fatigue load. There are two remarkable trends for wind energy. First, more and more large wind farms are developed in order to reduce the unit-power cost in installation, operation, maintenance and transmission. Second, offshore wind energy has received significant attention when the scarcity of land resource has appeared to be a major bottleneck for next level of wind penetration, especially for Europe and Asia. This dissertation study investigates on several wind turbine control issues in the context of wind farm and offshore operation scenarios.;Traditional wind farm control strategies emphasize the effect of the deficit of average wind speed, i.e. on how to guarantee the power quality from grid integration angle by the control of the electrical systems or maximize the energy capture of the whole wind farm by optimizing the setting points of rotor speed and blade pitch angle, based on the use of simple wake models, such as Jensen wake model. In this study, more complex wake models including detailed wind speed deficit distribution across the rotor plane and wake meandering are used for load reduction control of wind turbine. A periodic control scheme is adopted for individual pitch control including static wake interaction, while for the case with wake meandering considered, both a dual-mode model predictive control and a multiple model predictive control is applied to the corresponding individual pitch control problem, based on the use of the computationally efficient quadratic programming solver qpOASES. Simulation results validated the effectiveness of the proposed control schemes.;Besides, as an innovative nearly model-free strategy, the nested-loop extremum seeking control (NLESC) scheme is designed to maximize energy capture of a wind farm under both steady and turbulent wind. The NLESC scheme is evaluated with a simple wind turbine array consisting of three cascaded variable-speed turbines using the SimWindFarm simulation platform. For each turbine, the torque gain is adjusted to vary/control the corresponding axial induction factor. Simulation under smooth and turbulent winds shows the effectiveness of the proposed scheme. Analysis shows that the optimal torque gain of each turbine in a cascade of turbines is invariant with wind speed if the wind direction does not change, which is supported by simulation results for smooth wind inputs. As changes of upstream turbine operation affects the downstream turbines with significant delays due to wind propagation, a cross-covariance based delay estimate is proposed as adaptive phase compensation between the dither and demodulation signals.;Another subject of investigation in this research is the evaluation of an innovative scheme of actuation for stabilization of offshore floating wind turbines based on actively controlled aerodynamic vane actuators. For offshore floating wind turbines, underactuation has become a major issue and stabilization of tower/platform adds complexity to the control problem in addition to the general power/speed regulation and rotor load reduction controls. However, due to the design constraints and the significant power involved in the wind turbine structure, a unique challenge is presented to achieve low-cost, high-bandwidth and low power consumption design of actuation schemes. A recently proposed concept of vertical and horizontal vanes is evaluated to increase damping in roll motion and pitch motion, respectively. The simulation platform FAST has been modified including vertical and horizontal vane control. Simulation results validated the effectiveness of the proposed vertical and horizontal active vane actuators.
机译:就增强能量捕获和减少疲劳负荷而言,先进控制技术的发展是降低风力发电能源成本的关键措施。风能有两个显着趋势。首先,为了减少安装,运行,维护和传输中的单位电力成本,开发了越来越多的大型风电场。其次,当土地资源的稀缺似乎成为下一级别风能渗透的主要瓶颈时,海上风能受到了极大关注,尤其是对于欧洲和亚洲。本论文研究了风电场和海上作业场景下的几个风机控制问题。;传统风电场控制策略强调平均风速不足的影响,即如何从电网集成角度保证电能质量。通过使用简单的尾流模型(例如Jensen尾流模型),通过控制电气系统或通过优化转子速度和叶片桨距角的设定点来最大化整个风电场的能量捕获。在这项研究中,更复杂的尾流模型(包括在整个转子平面上的详细风速赤字分布和尾流曲折)被用于风力涡轮机的负荷降低控制。对于包括静态唤醒相互作用的单个桨距控制,采用周期控制方案,而对于考虑到弯道曲折的情况,基于相应的单个桨距控制问题,将双模模型预测控制和多模型预测控制都应用于使用高效计算的二次规划求解器qpOASES。仿真结果验证了所提出的控制方案的有效性。此外,作为一种创新的几乎无模型的策略,嵌套环极值搜索控制(NLESC)方案旨在最大程度地稳定和湍动风能下捕获风电场的能量。使用SimWindFarm仿真平台,使用由三个级联变速涡轮机组成的简单风力涡轮机阵列评估NLESC方案。对于每个涡轮机,调节扭矩增益以改变/控制相应的轴向感应系数。在顺风和湍流风下的仿真表明了该方案的有效性。分析表明,如果风向不变化,则级联涡轮中的每个涡轮的最佳转矩增益都随风速而不变,这由平滑风输入的模拟结果支持。由于上游涡轮机运行的变化由于风的传播而对下游涡轮机产生显着的延迟影响,因此提出了一种基于互协方差的延迟估计,作为抖动和解调信号之间的自适应相位补偿。一种基于主动控制的气动叶片执行器的海上浮动风轮机稳定控制的创新方案。对于海上浮动式风力涡轮机来说,欠驱动已成为主要问题,除了一般的功率/速度调节和转子负载降低控制外,塔架/平台的稳定还增加了控制问题的复杂性。然而,由于设计约束和风力涡轮机结构中涉及的大量功率,提出了独特的挑战来实现致动方案的低成本,高带宽和低功耗设计。对最近提出的垂直和水平叶片的概念进行了评估,以分别增加侧倾运动和俯仰运动的阻尼。模拟平台FAST已修改,包括垂直和水平叶片控制。仿真结果验证了所提出的垂直和水平主动叶片致动器的有效性。

著录项

  • 作者

    Yang, Zhongzhou.;

  • 作者单位

    The University of Wisconsin - Milwaukee.;

  • 授予单位 The University of Wisconsin - Milwaukee.;
  • 学科 Energy.;Engineering Mechanical.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 324 p.
  • 总页数 324
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:45

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号