首页> 外文学位 >Angle-resolved photoemission and first-principles studies of topological thin films.
【24h】

Angle-resolved photoemission and first-principles studies of topological thin films.

机译:角度分辨光发射和拓扑薄膜的第一性原理研究。

获取原文
获取原文并翻译 | 示例

摘要

Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. The exotic electronic properties of topological materials are of great interest for spin-related electronics and quantum computation. In this thesis research, the combination of angleresolved photoemission spectroscopy (ARPES) and first principles calculation is used to examine the electronic properties of topological thin films and 2D electronic systems with large spin-orbit splitting. The topological thin films are prepared in situ by molecular beam epitaxy (MBE) method and characterized by experimental tools such as reflection high-energy electron diffraction (RHEED) and low energy electron diffraction (LEED). The systems investigated in this thesis include topological Sb, Bi2Te3, Be2Se 3 thin films, Bi films, and Bi/Ag surface alloy.;Topological Sb films have been successfully fabricated on Si(111) substrates. By examining the connection pattern between surface states and the quantum well bulk states, our photoemission spectra show clearly the topological order of the Sb films. When topological films become ultrathin, the quantum tunneling effect breaks the degeneracy at the Dirac point of the topological surface bands, resulting in a gap. Our ARPES mapping of the surface band structure of a 4-BL Sb film reveals no energy gap at the Dirac point. This lack of tunneling gap can be explained by a strong interfacial bonding between the film and the substrate.;The topological order of topological materials is a robust quantity, but the topological surface states themselves can be highly sensitive to the boundary conditions. Specifically, the surface states of Bi2Se3 and Bi2Te3 form a single Dirac cone at the zone center. Our first-principles calculations based on a slab geometry show that, upon hydrogen termination of either face of the slab, the Dirac cone associated with this face is replaced by three Dirac cones centered at the time-reversal-invariant M¯ points at the zone boundary. The critical behavior of the TI film near the quantum critical point is also studied theoretically. When the strength of the spin-orbit coupling (SOC) is tuned across the critical point, the topological surface states, while protected by symmetry in the bulk limit, can be missing completely in topological films even at large film thicknesses.;We have observed, using angle-resolved photoemission, a structural phase transformation of Bi films deposited on Si(111)-(7x7). Films with thicknesses 20 to ~100 A, upon annealing, first order into a metastable pseudocubic (PC) phase and then transform into a stable rhombohedral (RH) phase with very different topologies for the quantum well subband structures. The PC phase shows a surface band with a maximum near the Fermi level at G , whereas the RH phase shows a Dirac-like subband around M¯ along K¯ -- M¯ -- K¯ . The formation of the metastable phase over a wide thickness range can be attributed to a surface nucleation mechanism.;Finally, we have studied the electronic structure of the Bi/Ag surface alloy, a system possessing a huge Rashba splitting in its surface bands. The Bi/Ag surface alloy is prepared by depositing Bi onto ultrathin Ag films followed by annealing. The electronic structure of the system is measured using circular angle resolved photoemission spectroscopy (CARPES). The results reveal two interesting phenomena: the hybridization of spin polarized surface states with Ag bulk quantum well states and the umklapp scattering by the perturbed surface potential. In addition, our CARPES spectra show clearly a unique dichroism pattern which is closely related to the spin texture of this 2D strongly spin-orbit coupled electron system.
机译:拓扑绝缘体是电子材料,具有像普通绝缘体一样的带隙,但在其边缘或表面具有受保护的导电状态。拓扑材料的奇异电子性质对于与自旋相关的电子和量子计算非常感兴趣。本文将角度分辨光电子能谱(ARPES)和第一性原理计算相结合来研究拓扑薄膜和具有大自旋轨道分裂的二维电子系统的电子性质。拓扑薄膜是通过分子束外延(MBE)方法原位制备的,并通过诸如反射高能电子衍射(RHEED)和低能电子衍射(LEED)等实验工具进行表征。本文研究的系统包括拓扑Sb,Bi2Te3,Be2Se3薄膜,Bi膜和Bi / Ag表面合金。;拓扑Sb膜已成功地在Si(111)衬底上制备。通过检查表面态与量子阱本体态之间的连接方式,我们的光发射光谱清楚地显示了Sb膜的拓扑顺序。当拓扑膜变得超薄时,量子隧穿效应会破坏拓扑表面带的Dirac点处的简并性,从而导致缺口。我们的4-BL Sb薄膜表面带结构的ARPES映射显示,狄拉克点处没有能隙。隧道间隙的缺乏可以用薄膜与基底之间的牢固界面结合来解释。拓扑材料的拓扑顺序是一个可靠的量,但是拓扑表面状态本身对边界条件可能非常敏感。具体地,Bi 2 Se 3和Bi 2 Te 3的表面状态在区域中心形成单个狄拉克锥。我们基于平板几何形状的第一性原理计算表明,在平板任一面的氢终止时,与该面相关的狄拉克锥被三个狄拉克锥所取代,该三个狄拉克锥以该区域的时间不变M点为中心边界。理论上还研究了TI膜在量子临界点附近的临界行为。当在临界点上调整自旋轨道耦合(SOC)的强度时,拓扑表面状态虽然受体积限制中的对称性的保护,但即使在较大的膜厚度下,也可能完全不存在于拓扑膜中。 ,使用角度分辨的光发射,沉积在Si(111)-(7x7)上的Bi膜的结构相变。退火后,厚度为20至〜100 A的薄膜首先进入亚稳态伪立方(PC)相,然后转变为具有稳定态的菱面体(RH)相,其量子阱子带结构的拓扑结构非常不同。 PC相显示出一个在G处的费米能级附近有一个最大的表面带,而RH相则显示了一个沿着M-K沿着M-周围的狄拉克子带。最后,我们研究了Bi / Ag表面合金的电子结构,该系统在其表面能带上具有巨大的Rashba裂变,这是由于在宽的厚度范围内形成了亚稳态相。 Bi / Ag表面合金的制备方法是将Bi沉积到超薄Ag膜上,然后进行退火。使用圆角分辨光发射光谱法(CARPES)测量系统的电子结构。结果揭示了两个有趣的现象:自旋极化的表面态与Ag本体量子阱态的杂交以及被扰动的表面电势引起的umklapp散射。此外,我们的CARPES光谱清楚地显示出独特的二向色性模式,该模式与该2D强自旋轨道耦合电子系统的自旋纹理密切相关。

著录项

  • 作者

    Bian, Guang.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号