首页> 外文学位 >Boundary control of parabolic PDE using adaptive dynamic programming.
【24h】

Boundary control of parabolic PDE using adaptive dynamic programming.

机译:使用自适应动态规划的抛物线PDE边界控制。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, novel adaptive/approximate dynamic programming (ADP) based state and output feedback control methods are presented for distributed parameter systems (DPS) which are expressed as uncertain parabolic partial differential equations (PDEs) in one and two dimensional domains. In the first step, the output feedback control design using an early lumping method is introduced after model reduction. Subsequently controllers were developed in four stages; Unlike current approaches in the literature, state and output feedback approaches were designed without utilizing model reduction for uncertain linear, coupled nonlinear and two-dimensional parabolic PDEs, respectively. In all of these techniques, the infinite horizon cost function was considered and controller design was obtained in a forward-in-time and online manner without solving the algebraic Riccati equation (ARE) or using value and policy iterations techniques.;Providing the stability analysis in the original infinite dimensional domain was a major challenge. Using Lyapunov criterion, the ultimate boundedness (UB) result was demonstrated for the regulation of closed-loop system using all the techniques developed herein. Moreover, due to distributed and large scale nature of state space, pure state feedback control design for DPS has proven to be practically obsolete. Therefore, output feedback design using limited point sensors in the domain or at boundaries are introduced. In the final two papers, the developed state feedback ADP control method was extended to regulate multi-dimensional and more complicated nonlinear parabolic PDE dynamics.
机译:本文针对分布式参数系统(DPS),提出了一种基于自适应/近似动态规划(ADP)的状态和输出反馈控制方法,该方法在一维和二维域中表示为不确定抛物型偏微分方程(PDE)。第一步,在模型简化之后,采用早期集总法引入输出反馈控制设计。随后,控制器分四个阶段开发;与文献中的当前方法不同,分别针对不确定的线性,耦合非线性和二维抛物线PDE设计了状态和输出反馈方法,而没有利用模型简化。在所有这些技术中,都考虑了无限远景成本函数,并且以实时和在线的方式获得了控制器设计,而无需求解代数Riccati方程(ARE)或使用值和策略迭代技术。在原始的无限维域中,这是一个重大挑战。使用李雅普诺夫准则,证明了使用本文开发的所有技术调节闭环系统的极限极限(UB)结果。此外,由于状态空间的分布和大规模性质,已证明用于DPS的纯状态反馈控制设计实际上已过时。因此,引入了在域内或边界使用有限点传感器的输出反馈设计。在最后两篇论文中,扩展了已开发的状态反馈ADP控制方法,以调节多维和更复杂的非线性抛物线PDE动力学。

著录项

  • 作者

    Talaei, Behzad.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Engineering.;Systems science.;Applied mathematics.;Mathematics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号