首页> 外文学位 >Energy Efficient Ethanol Dehydration Using Nanofiborus Based Membranes.
【24h】

Energy Efficient Ethanol Dehydration Using Nanofiborus Based Membranes.

机译:使用基于纳米纤维的膜进行的高能效乙醇脱水。

获取原文
获取原文并翻译 | 示例

摘要

In this study, nanofibrous based membranes were designed, fabricated, characterized and then evaluated for ethanol dehydration in terms of flux, separation factor and energy efficiency. The developed pervaporation (PV) membranes comprise of a barrier layer and a thin-film nanofibrous composite (TFNC) as the supporting scaffold. The TFNC scaffold consisted of three layers: an ultra-fine cellulose nanofibrous (CN) layer, a polyacrylonitrile (PAN) electrospun nanofibrous mid-layer and a polyethylene terephthalate (PET) nonwoven microfibrous bottom layer. The TFNC scaffold had high bulk porosity (up to 80% on electrospun nanofibers) and high surface to volume ratio, and formed a fully interconnected pore structure with 52%--80% of pressure drop from the similar class of commercial membranes. The nanofibrous scaffold also provided lower transport resistance and minimized the Kundson diffusion behavior for pervaporation (PV). A barrier layer of polyvinyl alcohol (PVA) cross-linked by fumaric acid, was coated on TFNC to form a PV membrane, which showed superior performance during evaluation for ethanol dehydration, when compared with the same conventional PV membranes with cross-linked PVA barrier layer. The ethanol dehydration results of this new class of PV membranes under varying operating conditions were also investigated.;Another type of barrier layer based on multilayered grapheme oxide (GO), was deposited onto the TFNC scaffold to form a high flux PV membrane, by taking advantage of the unique property of GO sheets. The ethanol dehydration experiments showed that the permeate flux doubled and the separation factor quadrupled, compared to commercial (PVA)-based membranes. The morphology of the GO-TFNC membranes and the mechanism of water transport in the GO layer were also elucidated. Further modification of GO was achieved by using an optimal amount of borate to cross-link GO and thereby to stabilize GO. This treatment could improve the thermal stability without affecting the permeability due to the interplay between the enlarged nanocapillary and the reduced hydrophilicty of the GO layer. Both PVA-TFNC and GO-TFNC membrane systems showed promise for possible replacement of the expensive distillation step in the commercial fermentation ethanol production process.
机译:在这项研究中,基于纳米纤维的膜经过设计,制造,表征,然后根据通量,分离因子和能效对乙醇脱水进行了评估。已开发的全蒸发(PV)膜包括一个阻隔层和一个薄膜纳米纤维复合材料(TFNC)作为支撑支架。 TFNC支架由三层组成:超细纤维素纳米纤维(CN)层,聚丙烯腈(PAN)电纺纳米纤维中间层和聚对苯二甲酸乙二酯(PET)非织造微纤维底层。 TFNC支架具有高孔隙率(在电纺纳米纤维上可达80%)和高表面体积比,并形成了一个完全互连的孔结构,与同类商品膜相比,其压降为52%-80%。纳米纤维支架还提供了较低的运输阻力,并最小化了全蒸发(PV)的Kundson扩散行为。与富马酸交联的聚乙烯醇(PVA)阻隔层涂覆在TFNC上以形成PV膜,与具有交联PVA阻隔层的传统PV膜相比,在乙醇脱水评估中显示出优异的性能层。还研究了这种新型PV膜在不同操作条件下的乙醇脱水结果。另一类基于多层石墨烯氧化物(GO)的阻隔层被沉积在TFNC支架上,以形成高通量PV膜。 GO工作表独特特性的优势。乙醇脱水实验表明,与基于商业(PVA)的膜相比,渗透通量增加了一倍,分离系数增加了三倍。还阐明了GO-TFNC膜的形态和水在GO层中的传输机理。通过使用最佳量的硼酸盐交联GO从而稳定GO,可以实现GO的进一步修饰。由于扩大的纳米毛细管和降低的GO层的亲水性之间的相互作用,这种处理可以改善热稳定性而不影响渗透性。 PVA-TFNC和GO-TFNC膜系统都有望在工业发酵乙醇生产过程中替代昂贵的蒸馏步骤。

著录项

  • 作者

    Yeh, Tsung-Ming.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Materials science.;Energy.;Polymer chemistry.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号