首页> 外文学位 >An improved electrical impedance tomography system.
【24h】

An improved electrical impedance tomography system.

机译:改进的电阻抗层析成像系统。

获取原文
获取原文并翻译 | 示例

摘要

Electrical impedance tomography (EIT) is an imaging technique for which a fast and accurate reconstruction procedure remains challenging. Recent studies suggested different methods for robust images reconstruction but few were found to be applicable in the medical field. In this study, fast as well as noise-robust reconstruction algorithms were developed. A simple EIT acquisition system was built. The EIT acquisition system is a 36-electrode system where current is injected and voltages are measured.; The reconstruction procedure adapted in this work was based on solving the full nonlinear least square problem. The nonlinear least square problem was solved using Gauss-Newton methods with modifications added due to the ill-conditioned reconstruction procedure. During this study, two new techniques based on the Levenberg-Marquardt regularization were used to reconstruct images: The trust region reflective Newton method and the secant Levenberg-Marquardt method. The first method was found to be globally convergent but slow and time consuming due to the evaluation of the Jacobian matrix at each step. To avoid the evaluation of the Jacobian in each iteration, the method of Levenberg-Marquardt with Broyden update of the Jacobian (secant Levenberg-Marquardt method) was used. This approach was found to be faster but locally convergent.; The EIT reconstruction procedure is an ill-conditioned procedure with many possible sources of noise and errors, which tend to make it even more complicated. Furthermore, the Levenberg-Marquardt method introduces perturbations to the solution. In this work, the singular value decomposition was used to analyze the properties of the EIT inverse problem. The reconstruction of images was based on two procedures: truncated singular value decomposition (TSVD), which is analogous to an ideal filter in signal processing, and Tikhonov regularization, which is analogous to a smooth filter. Truncated singular value decomposition reconstruction was found to have good convergence properties and the ability to introduce less noise, or errors, in the conductivity image than other methods. Tikhonov regularization with two techniques for finding the regularization parameter, L-curve criterion and discrepancy principle, was used in this work. Although both techniques were able to produce good images, Tikhonov regularization with discrepancy principle was found to be more stable. TSVD and Tikhonov regularization were found to converge in a few steps with super-linear (quadratic) convergence. The null hypothesis of no difference in the noise level between the reconstructed image using the Levenberg-Marquardt method and the singular value decomposition method was rejected.; The last part of this work demonstrates the development of a three-dimensional EIT imaging system. The hardware was the same as in the two-dimensional acquisition, with a slight modification in the electrode arrangement and the acquisition software. Images were reconstructed using the trust region reflective Newton method.; The image quality in 2D and 3D can be further improved if more information about the errors and noise are available. For example, information about the error in the finite element modeling can be used in the image reconstruction, and the method of the total least squares can be used to solve the least square problem.
机译:电阻抗断层扫描(EIT)是一种成像技术,对其快速准确的重建过程仍然具有挑战性。最近的研究提出了用于健壮图像重建的不同方法,但是很少发现适用于医学领域。在这项研究中,开发了快速以及鲁棒的重建算法。建立了一个简单的EIT采集系统。 EIT采集系统是一个36电极系统,其中注入电流并测量电压。在这项工作中采用的重建程序是基于解决完全非线性最小二乘问题的。使用高斯-牛顿法解决了非线性最小二乘问题,并由于病态重建程序而进行了修改。在这项研究中,基于Levenberg-Marquardt正则化的两种新技术被用于重建图像:信任区域反射牛顿法和正割Levenberg-Marquardt方法。发现第一种方法是全局收敛的,但是由于在每个步骤都需要评估Jacobian矩阵,所以该方法缓慢且耗时。为了避免在每次迭代中评估雅可比矩阵,使用了带有雅可比矩阵的Broyden更新的Levenberg-Marquardt方法(割线Levenberg-Marquardt方法)。人们发现这种方法更快,但局部收敛。 EIT重建过程是一种病态过程,具有许多可能的噪声和错误源,这往往使其变得更加复杂。此外,Levenberg-Marquardt方法将微扰引入解决方案。在这项工作中,奇异值分解被用来分析EIT反问题的性质。图像的重建基于两个过程:截断奇异值分解(TSVD)(类似于信号处理中的理想滤波器)和Tikhonov正则化(类似于平滑滤波器)。发现截断的奇异值分解重构具有良好的收敛特性,并且与其他方法相比,具有在电导率图像中引入较少噪声或误差的能力。这项工作使用了Tikhonov正则化,并使用两种技术来寻找正则化参数:L曲线准则和差异原理。尽管两种技术都能产生良好的图像,但发现具有差异原理的Tikhonov正则化更为稳定。发现TSVD和Tikhonov正则化以超线性(二次)收敛在几个步骤中收敛。拒绝了使用Levenberg-Marquardt方法和奇异值分解方法在重建图像之间没有噪声水平差异的零假设。这项工作的最后一部分演示了三维EIT成像系统的开发。硬件与二维采集中的相同,只是电极排列和采集软件稍有改动。使用信任区域反射牛顿法重建图像。如果可以获取有关错误和噪声的更多信息,则可以进一步提高2D和3D中的图像质量。例如,关于有限元建模中的误差的信息可以用于图像重建,并且总最小二乘法可以用于解决最小二乘问题。

著录项

  • 作者

    Fraiwan, Luay A.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号