首页> 外文学位 >Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback.
【24h】

Micromachined diffraction based optical microphones and intensity probes with electrostatic force feedback.

机译:基于微机械衍射的光学麦克风和带有静电力反馈的强度探头。

获取原文
获取原文并翻译 | 示例

摘要

Measuring acoustic pressure gradients is critical in many applications such as directional microphones for hearing aids and sound intensity probes. This measurement is especially challenging with decreasing microphone size, which reduces the sensitivity due to small spacing between the pressure ports. Novel, micromachined biomimetic microphone diaphragms are shown to provide high sensitivity to pressure gradients on one side of the diaphragm with low thermal mechanical noise. These structures have a dominant mode shape with see-saw like motion in the audio band, responding to pressure gradients as well as spurious higher order modes sensitive to pressure. In this dissertation, integration of a diffraction based optical detection method with these novel diaphragm structures to implement a low noise optical pressure gradient microphone is described and experimental characterization results are presented, showing 36 dBA noise level with 1mm port spacing, nearly an order of magnitude better than the current gradient microphones. The optical detection scheme also provides electrostatic actuation capability from both sides of the diaphragm separately which can be used for active force feedback. A 4-port electromechanical equivalent circuit model of this microphone with optical readout is developed to predict the overall response of the device to different acoustic and electrostatic excitations. The model includes the damping due to complex motion of air around the microphone diaphragm, and it calculates the detected optical signal on each side of the diaphragm as a combination of two separate dominant vibration modes. This equivalent circuit model is verified by experiments and used to predict the microphone response with different force feedback schemes. Single sided force feedback is used for active damping to improve the linearity and the frequency response of the microphone. Furthermore, it is shown that using two sided force feedback one can significantly suppress or enhance the desired vibration modes of the diaphragm. This approach provides an electronic means to tailor the directional response of the microphones, with significant implications in device performance for various applications. As an example, the use of this device as a particle velocity sensor for sound intensity and sound power measurements is investigated. Without force feedback, the gradient microphone provides accurate particle velocity measurement for frequencies below 2 kHz, after which the pressure response of the second order mode becomes significant. With two-sided force feedback, the calculations show that this upper frequency limit may be increased to 10 kHz. This improves the pressure residual intensity index by more than 15 dB in the 50 Hz--10 kHz range, matching the Class I requirements of IEC 1043 standards for intensity probes without any need for multiple spacers.
机译:在许多应用中,例如用于助听器的定向麦克风和声强探头,测量声压梯度至关重要。在减小麦克风尺寸的情况下,此测量尤其具有挑战性,由于压力端口之间的间距很小,麦克风的尺寸会降低灵敏度。新型微加工仿生麦克风振膜表现出对振膜一侧压力梯度的高灵敏度,并且热机械噪声低。这些结构具有主导模式形状,并在音频带中像跷跷板一样运动,响应压力梯度以及对压力敏感的伪高阶模式。本文介绍了基于衍射的光学检测方法与这些新颖的膜片结构的集成,以实现低噪声光学压力梯度传声器,并给出了实验表征结果,该结果表明在端口间距为1mm的情况下,噪声水平为36 dBA,接近一个数量级。比目前的梯度麦克风更好。光学检测方案还分别从隔膜的两侧提供静电驱动功能,可用于主动力反馈。开发了具有光学读出功能的此麦克风的4端口机电等效电路模型,以预测设备对不同声和静电激励的总体响应。该模型包括由于麦克风振膜周围空气复杂运动而产生的阻尼,并且该模型将振膜两侧的检测到的光信号计算为两个单独的主要振动模式的组合。该等效电路模型已通过实验验证,并用于预测具有不同力反馈方案的麦克风响应。单侧力反馈用于主动阻尼,以改善麦克风的线性度和频率响应。此外,显示了使用两侧力反馈可以显着抑制或增强膜片的期望振动模式。这种方法提供了一种电子手段,可以调整麦克风的定向响应,从而对各种应用的设备性能产生重大影响。例如,研究了将该设备用作粒子速度传感器进行声强和声功率测量的方法。在没有力反馈的情况下,梯度传声器可为2 kHz以下的频率提供精确的粒子速度测量,此后,二阶模式的压力响应变得很明显。通过两侧力反馈,计算表明该上限频率可以增加到10 kHz。在50 Hz--10 kHz范围内,这将使压力残余强度指标提高了15 dB以上,从而符合IEC 1043标准对强度探头的I类要求,而无需使用多个垫片。

著录项

  • 作者

    Bicen, Baris.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.;Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 185 p.
  • 总页数 185
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:37:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号