首页> 外文学位 >Micromachined silicon diffractive optical force encoders: Operational principles and applications in biology.
【24h】

Micromachined silicon diffractive optical force encoders: Operational principles and applications in biology.

机译:微机械加工的硅衍射光学力编码器:生物学上的操作原理和应用。

获取原文
获取原文并翻译 | 示例

摘要

Miniaturized instruments for the injection and positioning of single cells and embryos are becoming increasingly important in biological and genetic studies. Localized and accurate microinjection of genetic material into biological model systems, such as Drosophila, will enable a variety of studies in developmental biology and genetics. For such studies to be carried out in-vivo, the damage caused by the injection must be minimized. We study the force required for the penetration and injection into Drosophila embryos using a surface micromachined silicon-nitride probe with integrated, micrograting-based force sensors. The probe is supported by springs with a known spring constant, and the penetration force is determined from displacement measurements using a high-resolution, miniaturized optical encoder that is designed to only be sensitive to axial deflections of the probe. We also demonstrate penetration force minimization through ultrasonic actuation of silicon-nitride microinjectors. To facilitate parallel, high-throughput microinjection of Drosophila embryos, we demonstrate microfluidic self-assembled immobilization of Drosophila embryos and measure the positioning force acting on the embryos in the array. The positioning force is the most critical parameter in determining alignment errors, which in turn determines whether acceptable injection yields can be achieved. We operate the optical-encoder force sensor in reflection to characterize the positioning forces, and to study shape-matching, alignment tolerance and hysteresis of the self-assembly process as a function of pad geometry. An extended surface energy model is developed for simulations of the positioning forces and the affiliated potential energy wells created by the oil-based fluidic system between the ellipsoidal embryo and the flat pad. Both experimental and simulation results show a linear-spring like relationship between the force and displacement of the embryos, in contrast to the constant positioning force profile observed for self-assembly of flat silicon pieces. Our measurements also show significant hysteresis in the force vs. displacement, indicating that friction plays an important role in the self-assembly process.
机译:在生物学和遗传学研究中,用于单细胞和胚胎的注射和定位的小型仪器变得越来越重要。将遗传物质局部准确地显微注射到生物模型系统(如果蝇)中,将使发育生物学和遗传学方面的研究得以进行。为了在体内进行此类研究,必须将注射引起的损害降至最低。我们使用具有集成的,基于微光栅的力传感器的表面微加工氮化硅探针,研究了渗透和注入果蝇胚胎所需的力。探头由具有已知弹簧常数的弹簧支撑,并且穿透力是使用高分辨率,微型化的光学编码器根据位移测量确定的,该编码器设计为仅对探头的轴向变形敏感。我们还演示了通过超声驱动氮化硅微型注射器实现的穿透力最小化。为了促进果蝇胚胎的并行,高通量显微注射,我们演示了果蝇胚胎的微流控自组装固定,并测量了作用于阵列中胚胎的定位力。定位力是确定对准误差的最关键参数,而对准误差又确定是否可以达到可接受的注射产量。我们以反射方式操作光学编码器力传感器,以表征定位力,并研究自组装过程的形状匹配,对准公差和滞后性,其与焊盘的几何形状有关。开发了一个扩展的表面能模型,用于模拟由椭圆形胚胎和平板之间的油基流体系统产生的定位力和相关的势能井。实验和仿真结果均显示了胚胎的力和位移之间的线性弹簧状关系,这与扁平硅片自组装所观察到的恒定定位力曲线相反。我们的测量结果还显示出力与位移的显着滞后现象,表明摩擦在自组装过程中起着重要作用。

著录项

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Biomedical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号