首页> 外文学位 >Getting Out Of A Tight Spot: Physics Of Flow Through Porous Materials.
【24h】

Getting Out Of A Tight Spot: Physics Of Flow Through Porous Materials.

机译:摆脱困境:通过多孔材料的流动物理。

获取原文
获取原文并翻译 | 示例

摘要

We study the physics of flow through porous materials in two different ways: by directly visualizing flow through a model three-dimensional (3D) porous medium, and by investigating the deformability of fluid-filled microcapsules having porous shells.;In the first part of this thesis, we develop an experimental approach to directly visualize fluid flow through a 3D porous medium. We use this to investigate drainage, the displacement of a wetting fluid from a porous medium by a non-wetting fluid, as well as secondary imbibition, the subsequent displacement of the non-wetting fluid by the wetting fluid. We characterize the intricate morphologies of the non-wetting fluid ganglia left trapped within the pore space, and show how the ganglia configurations vary with the wetting fluid flow rate. We then visualize the spatial fluctuations in the fluid flow, both for single- and multi-phase flow. We use our measurements to quantify the strong variability in the flow velocities, as well as the pore-scale correlations in the flow. Finally, we use our experimental approach to study the simultaneous flow of both a wetting and a non-wetting fluid through a porous medium, and elucidate the flow instabilities that arise for sufficiently large flow rates.;In the second part of this thesis, we study the mechanical properties of porous spherical microcapsules. We first introduce emulsions, and describe how their rheology depends on the microscopic interactions between the drops comprising them. We then study the formation and buckling of one class of microcapsule -- nanoparticle-coated emulsion drops. We also use double emulsions, drops within drops, as templates to form another class of microcapsule -- drops coated with thin, porous, polymer shells. We investigate how, under sufficient osmotic pressure, these microcapsules buckle, and show how the inhomogeneity in the shell structure can guide the folding pathway taken by a microcapsule as it buckles. Finally, we study the expansion and rupture of microcapsules under the influence of electrostatic forces. For both buckling and expansion, we show that the deformation dynamics can be understood by coupling shell theory with Darcy's law for flow through the porous microcapsule shell.
机译:我们通过两种不同的方式研究通过多孔材料的流动的物理原理:直接可视化通过模型三维(3D)多孔介质的流动,并研究具有多孔壳的充满流体的微胶囊的可变形性。在本文中,我们开发了一种实验方法来直接可视化通过3D多孔介质的流体流动。我们使用它来研究排水,非润湿流体从多孔介质中驱替润湿流体,以及二次吸水,以及随后润湿流体对非润湿流体的驱替。我们表征了滞留在孔隙空间中的非润湿性流体神经节的复杂形态,并显示了神经节结构如何随润湿液流速的变化而变化。然后,我们可以看到单相和多相流的流体流动空间波动。我们使用我们的测量结果来量化流速的强变化性以及流速中的孔尺度相关性。最后,我们使用实验方法研究润湿流体和非润湿流体同时通过多孔介质的流动,并阐明了在足够大的流速下产生的流动不稳定性。研究多孔球形微胶囊的力学性能。我们首先介绍乳液,并描述它们的流变性如何取决于包含它们的液滴之间的微观相互作用。然后,我们研究了一类微胶囊的形成和屈曲-纳米颗粒包裹的乳剂滴剂。我们还使用双重乳液(液滴内的液滴)作为模板来形成另一类微胶囊-涂覆有薄而多孔的聚合物壳的液滴。我们研究了在足够的渗透压下这些微囊如何发生弯曲,并显示了壳结构中的不均匀性如何指导微囊发生弯曲时所采取的折叠途径。最后,我们研究了在静电力的作用下微囊的膨胀和破裂。对于屈曲和膨胀,我们表明可以通过将壳理论与达西定律耦合以通过多孔微胶囊壳的流动来理解变形动力学。

著录项

  • 作者

    Datta, Sujit Sankar.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Physics Fluid and Plasma.;Geophysics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号