首页> 外文学位 >Doped Gallium Nitride grown by Phase Shift Epitaxy, fabrication and characterization of Gallium Nitride:Europium LED.
【24h】

Doped Gallium Nitride grown by Phase Shift Epitaxy, fabrication and characterization of Gallium Nitride:Europium LED.

机译:通过相移外延生长掺杂的氮化镓,氮化镓:Euro LED的制造和表征。

获取原文
获取原文并翻译 | 示例

摘要

A novel growth and doping scheme in Molecular Beam Epitaxy (MBE) named Phase Shift Epitaxy (PSE) is developed and described in this thesis. PSE is a periodic and dynamic growth scheme which desynchronizes the host material growth and the dopant incorporation by adjusting delays between shutter operations. PSE frees the doping procedure from the limited growth conditions of the host material, making it a very effective technique for determining the optimum surface condition for a particular dopant. In order to demonstrate its advantages over traditional MBE growth, PSE techniques were applied to the doping of GaN (activated layer of GaN:Eu LED) and Mg doping of GaN (p-type). The optimum PSE condition for GaN:Eu with Eu doped in a Ga-rich surface condition, was shown to lead to over 50% enhancement of the photoluminescence efficiency of Eu ions compared with the optimum traditional MBE condition. Luminescence from a specific Eu location was significantly increased. With the PSE growth of p-type GaN:Mg, Mg self-compensation effect was significantly suppressed at high Mg concentration when Mg is doped in an N-rich condition. A high hole concentration (2.4E18cm-3) is achieved with the optimum PSE condition for Mg doping. Even with a relatively high compensation donor level and a relatively poor template quality, this hole concentration result is comparable to the highest concentration, thanks to the self-compensating effect of PSE. Phase Shift Epitaxy is thus demonstrated to be a very effective tool in the doping of GaN, as well as other compound semiconductors. The PSE-grown active layer (GaN:Eu) and the p-type layer are also tested in devices such as GaN p-n junction and GaN:Eu LED in order to prove its feasibility in device fabrication.
机译:本文提出并描述了一种新型的分子束外延生长和掺杂方案,即相移外延(PSE)。 PSE是一种周期性且动态的生长方案,通过调整快门操作之间的延迟来使基质材料的生长和掺杂剂的掺入不同步。 PSE使掺杂过程摆脱了基质材料有限的生长条件,使其成为一种确定特定掺杂剂最佳表面条件的非常有效的技术。为了证明其优于传统MBE增长的优势,PSE技术被应用于GaN的掺杂(GaN:Eu LED的激活层)和GaN的Mg掺杂(p型)。与最佳传统MBE条件相比,在富Ga表面条件下掺入Eu的GaN:Eu的最佳PSE条件显示可将Eu离子的光致发光效率提高50%以上。从特定Eu位置发出的光显着增加。随着p型GaN:Mg的PSE的生长,当在富氮条件下掺杂Mg时,在高Mg浓度下Mg的自补偿效应被显着抑制。在用于Mg掺杂的最佳PSE条件下,可以实现高空穴浓度(2.4E18cm-3)。即使具有相对较高的补偿供体水平和相对较差的模板质量,由于PSE的自补偿效果,该孔浓度结果也可以与最高浓度相媲美。因此,证明了相移外延是掺杂GaN以及其他化合物半导体中非常有效的工具。为了证明其在器件制造中的可行性,还在GaN p-n结和GaN:Eu LED等器件中测试了PSE生长的有源层(GaN:Eu)和p型层。

著录项

  • 作者

    Zhong, Mingyu.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Materials science.;Optics.;Engineering.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号