首页> 外文学位 >Exploring the electronic, vibrational, and chemical sensing properties of graphene, nanotubes, nanoparticles, and other nanomaterials.
【24h】

Exploring the electronic, vibrational, and chemical sensing properties of graphene, nanotubes, nanoparticles, and other nanomaterials.

机译:探索石墨烯,纳米管,纳米颗粒和其他纳米材料的电子,振动和化学传感特性。

获取原文
获取原文并翻译 | 示例

摘要

Some might view the "nano revolution" as one of the most important developments of our time, as nanomaterials have been and continue to be a seemingly endless source of new and exciting physics and have found application in almost every imaginable aspect of our lives. Carbon allotropes such as graphene, which is a single atomic layer of carbon atoms in a hexagonal lattice, carbon nanotubes (CNTs), which can be thought of as graphene sheets rolled up into cylinders, and graphene nanoribbons (GNRs) have garnered massive attention in recent years due to their remarkable properties and many potential uses. This work investigates the fundamental properties and applications of certain nanomaterials such as carbon allotropes, semiconducting metal oxide (SMO) nanoparticles, and others in the exciting fields of gas sensing, nanoelectromechanical oscillation, and optical near field enhancement. It also introduces a novel GNR synthesis technique. Chapter 1 of this work is a brief introduction to the nanomaterials that will be investigated here. Chapter 2 presents experimental investigations into the interaction between gases and certain nanomaterials, including SMO nanoparticles, gold nanowires and thin films, CNTs, bare graphene, and graphene functionalized by a novel electrodeposition technique. New findings on the sensing mechanism of tungsten oxide nanoparticles for hydrogen sulfide gas are discussed. These findings suggest that previous models were incorrect or incomplete. Chapter 3 discusses sustained self-oscillations of a singly-clamped CNT under constant bias, a phenomenon which obviates the need for large external sources to drive nanomechanical oscillations. A model of the phenomenon is presented and used to guide scalable, top-down fabrication of self-oscillators. In chapter 4, a novel, clean technique for synthesizing GNRs with desired dimensions is demonstrated. It is shown that this method allows for transmission electron microscopy and electronic characterization of the GNRs during and after synthesis. A model of the underlying physical mechanism is proposed. In chapter 5, optical field enhancement near nanostructures, which has applications in optical antennae, photovoltaics, and near field optical microscopy, is modeled.
机译:有些人可能将“纳米革命”视为当今时代最重要的发展之一,因为纳米材料已经并且继续是看似无穷无尽的新的令人兴奋的物理学的源头,并且已经在我们生活中几乎可以想象的各个方面找到了应用。碳同素异形体,例如石墨烯,它是六边形晶格中的碳原子的单原子层;碳纳米管(CNT),可以认为是石墨烯片卷成圆柱体;石墨烯纳米带(GNR)在近年来,由于其卓越的性能和许多潜在用途。这项工作研究了某些纳米材料的基本性质和应用,例如碳同素异形体,半导体金属氧化物(SMO)纳米颗粒,以及其他在气体传感,纳米机电振荡和光学近场增强领域中的应用。它还介绍了一种新颖的GNR合成技术。这项工作的第一章简要介绍了将在此处进行研究的纳米材料。第2章介绍了对气体与某些纳米材料(包括SMO纳米粒子,金纳米线和薄膜,CNT,裸石墨烯和通过新型电沉积技术功能化的石墨烯)之间相互作用的实验研究。讨论了氧化钨纳米粒子对硫化氢气体传感机理的新发现。这些发现表明以前的模型是不正确或不完整的。第3章讨论了在恒定偏压下单钳位CNT的持续自激振荡,这种现象消除了需要大型外部源来驱动纳米机械振荡的现象。提出了一种现象模型,并将其用于指导自振荡器的可扩展,自顶向下的制造。在第4章中,展示了一种新颖,干净的技术来合成具有所需尺寸的GNR。结果表明,该方法可以在合成过程中和合成后对GNRs进行透射电子显微镜和电子表征。提出了潜在物理机制的模型。在第5章中,对近纳米结构的光场增强进行了建模,该结构在光学天线,光伏技术和近场光学显微镜中都有应用。

著录项

  • 作者

    Sussman, Allen.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Physics General.;Engineering Materials Science.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号