首页> 外文学位 >Electromigration in epitaxial copper lines on epitaxial underlayers.
【24h】

Electromigration in epitaxial copper lines on epitaxial underlayers.

机译:外延底层上外延铜线中的电迁移。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes investigation on electromigration (EM) behavior of epitaxial Cu interconnects on epitaxial underlayers.; The results indicate that nitrides underlayers increase the EM resilience of Cu lines by up to a factor of six. Empirical activation energies ( Q) for EM are 0.77 +/- 0.03, 0.76 +/- 0.03, 0.51 +/- 0.04 and 0.55 +/- 0.05 eV for Cu(001)/TiN, Cu(001)/TaN, Cu(001)/Ta and Cu(001)/MgO, respectively. These results correlate well with the adhesion energy (gamma) of Cu with the underlayers.; Dislocation pipe diffusion is not the dominant mechanism of EM. Instead, we find two different mechanisms, related to the gamma of the Cu with the underlayer. For Cu(001) on nitride underlayers, the gamma of Cu-underlayer is higher than that of Cu-Cu oxide film that is present on the Cu surfaces which results in EM occurring predominantly through surface diffusion. This is supported by agreement between the measured Q for EM in Cu with nitride underlayers, and that calculated from the gamma between Cu-Cu oxide. In contrast, the gamma of Cu(001) between Ta and MgO are lower than that of the Cu-Cu oxide, due to which the Cu/Ta and Cu/MgO interfaces serve as the EM pathways.; The shape and location of voids that cause EM-induced line-breakage were directly related to the atom transport pathway. For interfacial diffusion, the voids nucleate at the interface and grow into the film, giving them an upward concave shape. For surface diffusion, the voids nucleate at the top and grow inward into the film, giving them a downward concave shape.; Epitaxial Cu(111) lines exhibit higher EM resistance than Cu(001) lines, probably because the higher symmetry of diffusion anisotropy in (111) plane. Also, from the failure sites of (111) oriented lines we found faceted voids of 6-fold symmetry, most likely due to the high surface diffusion anisotropy in Cu.
机译:本文描述了外延底层上外延铜互连的电迁移(EM)行为的研究。结果表明,氮化物下层将Cu线的EM回弹性提高了六倍。对于Cu(001)/ TiN,Cu(001)/ TaN,Cu(),EM的经验活化能(Q)为0.77 +/- 0.03、0.76 +/- 0.03、0.51 +/- 0.04和0.55 +/- 0.05 eV 001)/ Ta和Cu(001)/ MgO。这些结果与Cu与底层的粘附能(γ)很好地相关。位错管扩散不是EM的主要机制。取而代之的是,我们发现了两种不同的机制,它们与带有底层的铜的伽玛有关。对于氮化物下层上的Cu(001),Cu下层的伽玛高于存在于Cu表面的Cu-Cu氧化膜的伽玛,这导致EM主要通过表面扩散而发生。这由在具有氮化物下层的Cu中测得的EM的Q与从Cu-Cu氧化物之间的γ计算得出的Q之间的一致性所支持。相反,Ta和MgO之间的Cu(001)的γ值低于Cu-Cu氧化物的γ,这是因为Cu / Ta和Cu / MgO界面充当了EM通道。引起EM引起的断线的空隙的形状和位置与原子传输途径直接相关。对于界面扩散,空隙在界面处成核并长入膜中,从而使其具有向上凹入的形状。对于表面扩散,空隙在顶部成核,并向内生长到薄膜中,形成向下凹的形状。外延Cu(111)线显示出比Cu(001)线更高的EM电阻,这可能是因为(111)平面中较高的扩散各向异性对称性。同样,从(111)取向线的失效点,我们发现了6倍对称的多面空隙,这很可能是由于Cu中高的表面扩散各向异性所致。

著录项

  • 作者

    Kim, Hyungwook.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号