首页> 外文学位 >Adaptive Optimization Methods in System-Level Bridge Management.
【24h】

Adaptive Optimization Methods in System-Level Bridge Management.

机译:系统级桥梁管理中的自适应优化方法。

获取原文
获取原文并翻译 | 示例

摘要

In 2012, over 25% of the bridges in the United States were rated as structurally deficient or functionally obsolete . Moreover, 35% of bridges are serving beyond their theoretical design lifespan and the number has been projected to increase over the next decade. The imperative needs of improving the overall condition of the bridge system has been impeded by the shortage of funding available for bridge repairs and maintenance. In 2006 the gap between Federal Highway Administration's (FHWA) estimates to eliminate the bridge maintenance backlog and the actual appropriations to bridges for repairs and maintenance from the Highway Bridge Program was ;In bridge management, agencies collect bridge condition data and develop deterioration models that predict the bridges' future conditions and associated costs, based on which maintenance, rehabilitation and reconstruction (MR&R) decisions are made. It is therefore critical to have accurate deterioration models. However, limited availability of data and incomplete understanding of the deterioration process result in inaccurate models, which lead to sub-optimal MR&R decisions and significant cost increases.;To address the inaccuracy stemming from limited bridge condition data, researchers have proposed Adaptive Control (AC) methods that update the deterioration models successively as new data become available. The underlying belief is that agencies can obtain more accurate deterioration models through updating and subsequently improve their MR&R decisions and achieve cost savings. State-of-the-art bridge management systems, such as Pontis, use a class of AC procedures known as Certainty Equivalent Control (CEC). The procedure used in Pontis updates the transition probabilities (i.e., the parameters of the component deterioration models) after each condition survey, and uses the updated probabilities in subsequent planning of MR&R decisions. Unfortunately, CEC does not necessarily lead to more accurate models, or guarantee savings in system costs; in other words, updating of the type in Pontis is not necessarily beneficial.;In the present dissertation, an AC method, Open-Loop Feedback Control (OLFC), is proposed for system-level bridge management. The performance of OLFC and the Pontis CEC is tested in a numerical study and empirical results show that OLFC has superior performance with respect to two criteria. In terms of improvement in model accuracy, the Pontis CEC yields systematic bias in model parameter estimates and therefore does not improve model accuracy. In all testing scenarios, the resulting deterioration models lead to faster deterioration than the true models. OLFC, on the other hand, results in consistent convergence to the true models in all testing scenarios and improves model accuracy. When evaluated by system costs, the Pontis CEC consistently results in higher system costs than the no-updating scenario. The increases are on the order of ;In addition, a computationally tractable optimization routine is developed for MR&R decision-making. The routine ensures strict conformity to system budget constraints and achieves satisfactory computational efficiency even given high levels of heterogeneity in bridge systems.
机译:2012年,美国超过25%的桥梁被评定为结构缺陷或功能已过时。此外,35%的桥梁的使用寿命已超出其理论设计寿命,并且预计在未来十年中,桥梁的数量将增加。桥梁维修和保养的资金短缺阻碍了改善桥梁系统整体状况的迫切需求。在2006年,联邦公路管理局(FHWA)消除桥梁维护积压的估计与公路桥梁计划对桥梁的维修和维护的实际拨款之间的差距为;在桥梁管理中,代理商收集桥梁状况数据并开发可预测的劣化模型桥梁的未来状况和相关成本,并根据这些决策做出维护,修复和重建(MR&R)的决定。因此,拥有精确的劣化模型至关重要。但是,数据可用性有限以及对变质过程的不完全理解导致模型不正确,从而导致MR&R决策不够理想,并且成本显着增加。为了解决桥梁条件有限的数据所带来的不准确性,研究人员提出了自适应控制(AC )的方法,这些方法会在有新数据可用时连续更新劣化模型。基本信念是,代理商可以通过更新并随后改善其MR&R决策来获得更准确的恶化模型,并节省成本。最先进的桥梁管理系统(例如Pontis)使用一类AC程序,称为确定性等效控制(CEC)。在每次状态调查后,Pontis中使用的过程都会更新过渡概率(即组件退化模型的参数),并在后续的MR&R决策计划中使用更新的概率。不幸的是,CEC不一定能得出更准确的模型,也不能保证节省系统成本。换而言之,Pontis中类型的更新并不一定是有益的。在本论文中,提出了一种AC方法,即开环反馈控制(OLFC),用于系统级桥梁管理。在数值研究中测试了OLFC和Pontis CEC的性能,经验结果表明,相对于两个标准,OLFC具有优越的性能。在改善模型准确性方面,Pontis CEC在模型参数估计中产生系统偏差,因此不会提高模型准确性。在所有测试方案中,最终的退化模型导致的退化比真实模型更快。另一方面,OLFC可以在所有测试方案中始终与真实模型保持一致,并提高了模型准确性。通过系统成本评估时,Pontis CEC始终比无更新方案导致更高的系统成本。增加量约为;此外,还为MR&R决策制定了易于计算的优化例程。该例程确保严格遵守系统预算约束,即使在桥梁系统中存在高度异构性的情况下,也可以获得令人满意的计算效率。

著录项

  • 作者

    Liu, Haotian.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Civil.;Operations Research.;Statistics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号