首页> 外文学位 >Parallelizable multibody algorithms for efficient multi-resolution modeling and simulation of dynamic systems.
【24h】

Parallelizable multibody algorithms for efficient multi-resolution modeling and simulation of dynamic systems.

机译:可并行的多体算法,用于动态系统的高效多分辨率建模和仿真。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this research is to extend the current capabilities of the divide-and-conquer based suite of multibody dynamics algorithms, and to develop new methods to achieve superior computational efficiency in the dynamic simulations of complex systems. The target application area is the efficient and adaptive coarse-grain modeling and simulations of large biopolymeric systems. Typically, the size these molecules ranges from a few hundred atoms to millions of atoms, whereas their dynamics may involve temporal magnitudes ranging from sub-femtosecond to beyond millisecond. As such, advance simulation methods, that attempt to reduce the computational burden offered by these extremely important biological systems, can be of great importance. The methods that are developed in this research are general in nature and easily lend themselves to more traditional areas involving multibody systems. Therefore, important applications of the current research work are also found in robotics, vehicle dynamics, and real time simulations of articulated bodies, among others. The research work presented in this dissertation has its foundation in the highly parallelizable suite of divide-and-conquer algorithms (DCA) for multibody systems. These methods provide a mathematical formulation for the efficient simulations of complex biopolymeric systems. To this extent, the present work focuses on extending the current capabilities of the DCA-based framework, thereby permitting adaptive modeling and simulation of the dynamic behavior of complex multibody systems, to a level greatly beyond what is currently possible (in terms of the size of the system, fidelity, and simulation time). This dissertation addresses this issue at three different levels. First, new algorithms are introduced to accompany previously proposed DCA-based multibody dynamics methods. Additionally, new techniques are developed that permits on-the-fly transitions between models with varying level of fidelity and/or changes in model types. Finally, adaptive simulation methods are developed, such that a high level of accuracy may be achieved in the computer simulations of multibody systems at minimum computational cost. This dissertation presents a constraint stabilization technique for the orthogonal complement-based divide-and-conquer algorithm (ODCA). The constraint stabilization allows long time simulations of kinematically constrained systems by controlling the growth in the constraint satisfaction error. Mathematical derivation of the new method is presented and its validity is demonstrated using several numerical examples. A new algorithm is presented for modeling multi-flexible-body systems in a floating frame of reference formulation. The new method utilizes interpolating splines to model the deformation field of the flexible bodies, and has several advantages over the previous capability in the DCA for modeling articulated deformable bodies. Necessary mathematics is developed and the usefulness of the splines-based DCA is established using numerical test cases. This research presents a novel method for modeling large deformations within the DCA framework. The new algorithm utilizes existing finite element formations to model highly elastic systems undergoing large rotations. The present method is tested using the absolute nodal coordinate formulation and it achieves linear and logarithmic complexity when implemented in serial and parallel, respectively. Necessary equations for the new method are derived and several numerical examples are also presented. On-the-fly transitions between models with different resolutions is the key to adaptive multibody simulations. This research presents new methods for achieving these model changes in articulated multi-flexible-body systems with focus on coarse-grained molecular dynamics. Present algorithm allows transition from a coarse scale model to a fine scale model and vice versa. The generalized momentum of the system remains conserved during these transitions and the issue of discontinuous changes in system energy is also discussed. Finally, new techniques for performing adaptive simulations in multibody systems are presented. The present methods utilize existing and newly developed capabilities in the DCA to achieve simplified yet accurate models, such that the computational efficiency associated with their simulations can be maximized. These adaptive simulations may automatically be guided by internal metrics indicators or by other user defined criterion. Different aspects of the adaptive simulations are tested using several numerical examples.
机译:这项研究的目的是扩展基于分治法的多体动力学算法套件的当前功能,并开发新的方法以在复杂系统的动力学仿真中实现出色的计算效率。目标应用领域是大型生物聚合物系统的高效自适应粗粒度建模和仿真。通常,这些分子的大小范围从几百个原子到数百万个原子不等,而它们的动力学可能涉及时间范围,范围从亚飞秒到几毫秒不等。这样,试图减轻这些极其重要的生物系统所提供的计算负担的先进的仿真方法可能非常重要。本研究开发的方法本质上是通用的,很容易将其应用于涉及多体系统的更传统的领域。因此,当前的研究工作在机器人技术,车辆动力学以及铰接式车身的实时模拟中也得到了重要的应用。本文的研究工作建立在高度可并行化的多体系统分治法套件(DCA)的基础上。这些方法为复杂生物聚合物系统的有效模拟提供了数学公式。在此程度上,本工作着重于扩展基于DCA的框架的当前功能,从而允许对复杂多体系统的动态行为进行自适应建模和仿真,其水平大大超出了当前可能的水平(就尺寸而言)系统,保真度和仿真时间)。本文从三个不同的层面解决了这个问题。首先,引入了新算法以伴随先前提出的基于DCA的多体动力学方法。另外,开发了新技术,该技术允许在具有不同保真度水平和/或模型类型变化的模型之间进行即时转换。最后,开发了自适应仿真方法,从而可以以最小的计算成本在多体系统的计算机仿真中实现很高的准确性。本文提出了一种基于正交补码的分治算法(ODCA)的约束稳定技术。约束稳定化可以通过控制约束满足误差的增长来对运动约束系统进行长时间仿真。提出了新方法的数学推导,并通过几个数值示例证明了其有效性。提出了一种用于在参考配方的浮动框架中对多柔体系统建模的新算法。该新方法利用内插样条曲线对柔性体的变形场进行建模,并且相对于DCA中对关节可变形体进行建模的能力,具有一些优势。开发了必要的数学,并使用数值测试案例建立了基于样条的DCA的实用性。这项研究提出了一种在DCA框架内建模大变形的新颖方法。新算法利用现有的有限元形式来模拟经受大旋转的高弹性系统。使用绝对节点坐标公式测试了本方法,当分别以串行和并行方式实现时,该方法实现了线性和对数复杂度。推导了该新方法的必要方程,并给出了一些数值示例。具有不同分辨率的模型之间的动态过渡是自适应多体仿真的关键。这项研究提出了新的方法来实现多关节柔性体系统中这些模型更改,重点是粗粒分子动力学。本算法允许从粗尺度模型过渡到细尺度模型,反之亦然。在这些过渡过程中,系统的广义动量保持不变,并且还讨论了系统能量不连续变化的问题。最后,介绍了用于在多体系统中执行自适应仿真的新技术。本方法利用DCA中现有的和新开发的功能来实现简化而又准确的模型,从而可以使与它们的仿真相关的计算效率最大化。这些自适应模拟可以自动由内部度量指标或其他用户定义的准则来指导。使用几个数值示例测试了自适应仿真的不同方面。

著录项

  • 作者

    Khan, Imad Mahfooz.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号