首页> 外文学位 >Controlling wave propagation through nonlinear engineered granular systems.
【24h】

Controlling wave propagation through nonlinear engineered granular systems.

机译:通过非线性工程颗粒系统控制波传播。

获取原文
获取原文并翻译 | 示例

摘要

We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave guiding chains to control the acoustic wave transmission. The rapid wave front amplitude decay exhibited by these granular networks makes them highly attractive for impact mitigation applications. The agreement between experiments, numerical simulations, and applicable theoretical predictions validates the wave guiding capabilities of these engineered granular crystals and networks and opens a wide range of possibilities for the realization of increasingly complex granular material design.
机译:我们研究一类特殊的有序颗粒系统的基本动力学行为,以设计具有独特物理特性的新型结构材料。颗粒系统的动力学特性由离散材料结构产生的非线性,赫兹力,压缩势和零拉伸强度决定。对粒状系统的基本粒子排列进行工程设计,可以实现独特的动态特性,而在自然,无序的粒状介质中则无法观察到。虽然对一维颗粒晶体的广泛研究表明它们可用于多种工程应用,但对高维系统的关注却很少。将这些研究扩展到更高的维度可以发现一维不可能实现的更丰富的物理现象,例如空间重定向和各向异性能量陷阱。我们介绍了实验,数值模拟(基于离散粒子模型),在某些情况下还提供了一些工程颗粒系统的理论预测,研究了粒子排列对高度非线性瞬态波传播的影响,从而开发了控制波传播路径的手段。本文的第一部分研究了由三种不同的2D粒子晶格结构(正方形,中心正方形和六边形颗粒晶体)的局部脉冲载荷引起的应力波传播。通过改变晶格结构,我们观察到了传播应力波的各种特性:准1D孤立波传播,具有可调波阵面形状的完全2D波传播以及2D脉冲波传播。此外,还研究了在实际的颗粒系统中不可避免存在的微弱障碍的影响。本文的后半部分研究了通过2D和3D有序网状颗粒链的孤立波传播,通过有选择地放置波导链来控制声波传输,从而降低了与颗粒晶体相比的有效密度。这些颗粒状网络展现出的快速波前振幅衰减,使其对于减轻冲击的应用极具吸引力。实验,数值模拟和适用的理论预测之间的一致性验证了这些工程化的粒状晶体和网络的波导能力,并为实现日益复杂的粒状材料设计提供了广泛的可能性。

著录项

  • 作者

    Leonard, Andrea.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Mechanical.;Physics General.;Physics Acoustics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号