首页> 外文学位 >Engineering aperiodic nanostructured surfaces for scattering-based optical devices.
【24h】

Engineering aperiodic nanostructured surfaces for scattering-based optical devices.

机译:工程非周期性纳米结构表面,用于基于散射的光学设备。

获取原文
获取原文并翻译 | 示例

摘要

Novel optical devices such as biosensors, color displays and authentication devices can be obtained from the distinctive light scattering properties of resonant nanoparticles and nanostructured arrays. These arrays can be optimized through the choice of material, particle morphology and array geometry. In this thesis, by engineering the multi-frequency colorimetric responses of deterministic aperiodic nanostructured surfaces (DANS) with various spectral Fourier properties, I designed, fabricated and characterized scattering-based devices for optical biosensing and structural coloration applications.;In particular, using analytical and numerical optimization, colorimetric biosensors are designed and fabricated with conventional electron beam lithography, and characterized using dark-field scattering imaging as well as image autocorrelation analysis of scattered intensity in the visible spectral range. These sensors, which consist of aperiodic surfaces ranging from quasi-periodic to pseudo-random structures with flat Fourier spectra, sustain highly complex structural resonances that enable a novel optical sensing approach beyond the traditional Bragg scattering. To this end, I have experimentally demonstrated that DANS with engineered structural colors are capable of detecting nanoscale protein monolayers with significantly enhanced sensitivity over periodic structures. In addition, different aperiodic arrays of gold (Au) nanoparticles are integrated with polydimethylsiloxane (PDMS) microfluidic structures by soft-lithographic micro-imprint techniques. Distinctive scattering spectral shifts and spatial modifications of structural color patterns in response to refractive index variations were simultaneously measured. The successful integration of DANS with microfluidics technology has introduced a novel opto-fluidic sensing platform for label-free and multiplexed lab-on-a-chip applications.;Moreover, by studying the isotropic scattering properties of homogenized Pinwheel aperiodic arrays, angle-insensitive (i.e. isotropic) coloration from nanostructured metal surfaces can be designed and optimized without randomization. Pinwheel nanoparticle arrays on a gold thin film were fabricated for the first time and investigated using dark-field scattering and angle-resolved reflectivity measurements. In sharp contrast to the colorimetric responses of periodically nanopatterned surfaces, which strongly depend on the observation angle, spatially uniform and isotropic green coloration of gold films were demonstrated using these engineered metal surfaces. In addition, the intensity of the scattered light is enhanced by plasmonic resonance originated from gold nanoparticles deposited on the gold substrates. The development of the enhanced isotropic scattering devices could advance plasmonic applications to color display, optical tagging and colorimetric sensing technologies.
机译:可以从共振纳米颗粒和纳米结构阵列的独特光散射特性获得诸如生物传感器,彩色显示器和身份验证设备之类的新型光学设备。这些阵列可以通过选择材料,粒子形态和阵列几何形状进行优化。在本文中,我通过设计具有各种光谱傅里叶特性的确定性非周期性纳米结构表面(DANS)的多频比色响应,设计,制造和表征了基于散射的光学生物传感和结构着色应用设备。数值优化后,比色生物传感器采用常规电子束光刻技术进行设计和制造,并利用暗场散射成像以及可见光谱范围内散射强度的图像自相关分析进行表征。这些传感器由从准周期到具有平坦傅立叶光谱的伪随机结构的非周期性表面组成,可维持高度复杂的结构共振,从而实现了超越传统布拉格散射的新型光学传感方法。为此,我已经通过实验证明了具有经过设计的结构颜色的DANS能够检测纳米级蛋白质单层,其灵敏度大大高于周期性结构。另外,通过软光刻微压印技术将金(Au)纳米颗粒的不同非周期性阵列与聚二甲基硅氧烷(PDMS)微流体结构集成在一起。同时测量了独特的散射光谱位移和结构色彩图案响应折射率变化的空间变化。 DANS与微流体技术的成功集成为无标签和多芯片实验室应用提供了一种新型的光流体传感平台。此外,通过研究均质风车非周期性阵列的各向同性散射特性,角度不敏感纳米结构金属表面的颜色(即各向同性)着色可以设计和优化而无需随机化。首次在金薄膜上制造了风车纳米颗粒阵列,并使用暗场散射和角度分辨反射率测量进行了研究。与强烈依赖观察角的周期性纳米图案表面的色度响应形成鲜明对比的是,使用这些工程金属表面证明了金膜的空间均匀和各向同性绿色。另外,通过源自沉积在金基底上的金纳米颗粒的等离子体共振增强了散射光的强度。增强的各向同性散射装置的开发可以促进等离子体技术在彩色显示,光学标记和比色传感技术中的应用。

著录项

  • 作者

    Lee, Yuk Kwan Sylvanus.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Mechanical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号