首页> 外文学位 >High Density Three-Dimensional Nanomagnetic Logic Systems Composed of Material with Crystalline Anisotropy.
【24h】

High Density Three-Dimensional Nanomagnetic Logic Systems Composed of Material with Crystalline Anisotropy.

机译:由具有晶体各向异性的材料组成的高密度三维纳米磁逻辑系统。

获取原文
获取原文并翻译 | 示例

摘要

In the past decades, semiconductor industry has been enhancing the performance of silicon-based processor through downsizing the size of transistors. However, miniaturization is approaching the physical limits. Difficulties like floating gate interference, low coupling ratio, and heat dissipation are increasingly severe. Therefore, nanoscale magnetic logic system, as a prominent alternative technology, is being studied. A theoretical study is reported to use a patterned network of nanomagnets (nanocells) as a new architecture for next-generation computing processors, in which the direction of the magnetization represents a binary signal in each cell.;Such shape-insensitive nanomagnetic devices can relieve severe fabrication constraints associated with building nanomagnetic cells of narrowly defined shapes. Particularly, comparison between materials with in-plane and out-of-plane crystalline anisotropy is presented. Properties of materials with in-plane crystalline anisotropy can be tailored to match those of shape-induced longitudinal nanomagnets while materials with out-of-plane anisotropy could enable a new set of features. For instance, besides the key features of any magnetic logic, i.e., non-volatility, low-power consumption, and radiation hardness, some of the new features of the out-of-plane materials include (i) cost-effective fabrication, (ii) scalability to sub-10-nm dimensions, and (iii) their natural ability to be extended into a three-dimensional (3-D) physical space which opens a new era of technology opportunities.;Implementation of a high density three-layer magnetic recording device is introduced. It proves the feasibility of using multilayer nanomagnetic material with perpendicular anisotropy to store 2N levels of signal (N is the amount of magnetic layers). Related experimental results are demonstrated. Moreover, similar three-dimensional four-layer architecture is proven to be a potential candidate of building majority logic gates. Development of energy-efficient spin-transfer torque (STT) magnetization reversal in sub-10nm magnetic tunneling junction (MTJ) point contacts is also explored. Reducing required switching current of STT-MTJ is an essential and practical issue in the manufacturing industry of STT-based MRAM. Both simulation and experimental results show the switching current requirement is at least an order magnitude less in devices of length in sub-10nm region, which has great importance for developing next generation MRAM. Besides, experimental results show there is little relevance between contact resistance and the TMR effect amplitude.
机译:在过去的几十年中,半导体行业一直在通过缩小晶体管的尺寸来提高基于硅的处理器的性能。但是,小型化正在接近物理极限。浮栅干扰,低耦合比和散热等难题日益严峻。因此,正在研究纳米级磁逻辑系统作为一种重要的替代技术。据报道,一项理论研究将图案化的纳米磁铁(nanocells)网络用作下一代计算处理器的新架构,其中磁化方向表示每个单元中的二进制信号;这种形状不敏感的纳米磁性设备可以缓解与构建狭窄定义的形状的纳米磁性电池相关的严格制造限制。特别地,提出了具有面内和面外晶体各向异性的材料之间的比较。可以调整具有平面内晶体各向异性的材料的属性,以匹配形状感应的纵向纳米磁体的性能,而具有平面外各向异性的材料可以启用一组新功能。例如,除了任何磁性逻辑的关键特征(即非易失性,低功耗和辐射硬度)外,平面外材料的一些新特征还包括(i)具有成本效益的制造, ii)可扩展至10纳米以下的尺寸,以及(iii)将其自然能力扩展到三维(3-D)物理空间,从而开辟了技术机遇的新时代。介绍了一层磁记录装置。它证明了使用具有垂直各向异性的多层纳米磁性材料来存储2N电平信号的可行性(N是磁性层的数量)。证明了相关的实验结果。此外,事实证明,类似的三维四层体系结构可能是构建多数逻辑门的潜在选择。还探索了在低于10nm的磁性隧穿结(MTJ)点触点中实现高能效自旋传递扭矩(STT)磁化反转的开发。在基于STT的MRAM的制造行业中,减小STT-MTJ的所需开关电流是必不可少的实际问题。仿真和实验结果均表明,在10nm以下长度的器件中,开关电流要求至少要低一个数量级,这对于开发下一代MRAM至关重要。此外,实验结果表明,接触电阻与TMR效应幅度之间几乎没有相关性。

著录项

  • 作者

    Tian, Yuan.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号