首页> 外文OA文献 >APPLICATIONS OF 4-STATE NANOMAGNETIC LOGIC USING MULTIFERROIC NANOMAGNETS POSSESSING BIAXIAL MAGNETOCRYSTALLINE ANISOTROPY AND EXPERIMENTS ON 2-STATE MULTIFERROIC NANOMAGNETIC LOGIC
【2h】

APPLICATIONS OF 4-STATE NANOMAGNETIC LOGIC USING MULTIFERROIC NANOMAGNETS POSSESSING BIAXIAL MAGNETOCRYSTALLINE ANISOTROPY AND EXPERIMENTS ON 2-STATE MULTIFERROIC NANOMAGNETIC LOGIC

机译:多态纳米磁体具有双轴磁晶各向异性的四态纳米磁学的应用及在二态多态纳米磁学中的实验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nanomagnetic logic, incorporating logic bits in the magnetization orientations of single-domain nanomagnets, has garnered attention as an alternative to transistor-based logic due to its non-volatility and unprecedented energy-efficiency. The energy efficiency of this scheme is determined by the method used to flip the magnetization orientations of the nanomagnets in response to one or more inputs and produce the desired output. Unfortunately, the large dissipative losses that occur when nanomagnets are switched with a magnetic field or spin-transfer-torque inhibit the promised energy-efficiency. Another technique offering superior energy efficiency, “straintronics”, involves the application of a voltage to a piezoelectric layer to generate a strain which is transferred to an elastically coupled magnetrostrictive layer, causing magnetization rotation. The functionality of this scheme can be enhanced further by introducing magnetocrystalline anisotropy in the magnetostrictive layer, thereby generating four stable magnetization states (instead of the two stable directions produced by shape anisotropy in ellipsoidal nanomagnets). Numerical simulations were performed to implement a low-power universal logic gate (NOR) using such 4-state magnetostrictive/piezoelectric nanomagnets (Ni/PZT) by clocking the piezoelectric layer with a small electrostatic potential (~0.2 V) to switch the magnetization of the magnetic layer. Unidirectional and reliable logic propagation in this system was also demonstrated theoretically. Besides doubling the logic density (4-state versus 2-state) for logic applications, these four-state nanomagnets can be exploited for higher order applications such as image reconstruction and recognition in the presence of noise, associative memory and neuromorphic computing. Experimental work in strain-based switching has been limited to magnets that are multi-domain or magnets where strain moves domain walls. In this work, we also demonstrate strain-based switching in 2-state single-domain ellipsoidal magnetostrictive nanomagnets of lateral dimensions ~200 nm fabricated on a piezoelectric substrate (PMN-PT) and studied using Magnetic Force Microscopy (MFM). A nanomagnetic Boolean NOT gate and unidirectional bit information propagation through a finite chain of dipole-coupled nanomagnets are also shown through strain-based u22clockingu22. This is the first experimental demonstration of strain-based switching in nanomagnets and clocking of nanomagnetic logic (Boolean NOT gate), as well as logic propagation in an array of nanomagnets.
机译:在单域纳米磁铁的磁化方向上结合了逻辑位的纳米磁性逻辑,由于其非挥发性和空前的能源效率,已成为基于晶体管的逻辑的替代品引起了人们的关注。该方案的能量效率由用于响应一个或多个输入并产生所需输出的用于翻转纳米磁体的磁化方向的方法确定。不幸的是,当纳米磁体通过磁场或自旋转移力矩切换时,会产生很大的耗散损耗,从而抑制了预期的能量效率。另一种提供卓越能效的技术“ straintronics”涉及对压电层施加电压以产生应变,该应变被传递至弹性耦合的磁致伸缩层,从而引起磁化旋转。通过在磁致伸缩层中引入磁晶各向异性,从而产生四个稳定的磁化状态(而不是由椭圆形纳米磁体中的形状各向异性产生的两个稳定方向),可以进一步增强该方案的功能。通过对压电层施加小的静电势(〜0.2 V)进行时钟切换以切换低速通用逻辑门(NOR),使用此类4态磁致伸缩/压电纳米磁铁(Ni / PZT)进行了数值模拟。磁性层。理论上也证明了该系统中的单向可靠逻辑传播。除了将逻辑应用的逻辑密度提高一倍(4态对2态)外,这些四态纳米磁体还可用于更高阶的应用,例如在存在噪声,关联记忆和神经形态计算的情况下进行图像重建和识别。基于应变的切换的实验工作仅限于多畴磁体或应变使畴壁移动的磁体。在这项工作中,我们还演示了在压电基板(PMN-PT)上制造并使用电磁力显微镜(MFM)研究的横向尺寸约为200 nm的2态单畴椭圆磁致伸缩纳米磁体中基于应变的转换。通过基于应变的 u22clocking u22还显示了通过偶极耦合纳米磁铁的有限链传播的纳米磁性布尔型NOT门和单向位信息。这是纳米磁体中基于应变的切换和纳米磁性逻辑(布尔非门)的计时以及纳米磁体阵列中的逻辑传播的第一个实验演示。

著录项

  • 作者

    Du27Souza Noel;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号