首页> 外文学位 >Three dimensional fluid structural interaction of tissue valves.
【24h】

Three dimensional fluid structural interaction of tissue valves.

机译:组织瓣的三维流体结构相互作用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents a stable fluid structural interaction technique to simulate the dynamics of tissue valves including bio-prosthetic heart valves and natural heart valves under physiological Reynolds numbers. A partitioned approach is implemented where the equations governing the flow and the displacement of the structure are solved using two distinct solvers. A FEAP based solid solver is strongly coupled to the p-ELAFINT flow solver using subiteration procedure. The flow solver has been massively parallelized so that the domain can be distributed among several processors. The fixed Cartesian method with adaptive mesh refinement in p-ELAFINT enables us to perform fast and efficient flow computations of problem involving moving boundaries such as heart valve leaflets. To capture the structure deformation, Enhanced Assumed Solid shell element has been implemented into the solid solver which is known for its locking free and superior bending characteristics. Aitken Relaxation method which dynamically computes the relaxation parameter is used for relaxing the solid displacement in the FSI coupling. This helps the subiteration procedure to achieve a faster convergence compared to traditional Subiterative procedures with fixed relaxation parameter. Fung type material model with experimentally derived parameters is used as the constitutive model to capture the realistic solid deformation.;Opening phase of a bicuspid aortic valve (BAV) model derived from a patient specific data and a pericardial bioprosthetic valve model were simulated using the FSI algorithm with realistic material parameters under physiological flow conditions. It was observed that the valves attained its fully open position under 35 milliseconds which is similar to the physiological opening. The bioprosthetic valve attained a fully circular orifice while the BAV attained an ellipsoidal shaped orifice at its fully open position. In the BAV, strong vortical patterns were observed at peak systole and recirculation zones were observed near the sino-tubular junction. The work presented in this thesis be seen as a platform from which complex patient specific data can be modeled under physiological conditions and as a base to include contact mechanics with which complete cardiac cycle can be simulated.
机译:本文提出了一种稳定的流体结构相互作用技术,以在生理雷诺数下模拟包括生物人工心脏瓣膜和天然心脏瓣膜在内的组织瓣膜的动力学。实施了一种分区方法,其中使用两个不同的求解器求解控制结构流动和位移的方程。使用子迭代程序将基于FEAP的固体求解器牢固地耦合到p-ELAFINT流动求解器。流求解器已经大规模并行化,因此可以在多个处理器之间分配域。 p-ELAFINT中具有自适应网格细化功能的固定笛卡尔方法使我们能够快速有效地对涉及移动边界(例如心脏瓣膜小叶)的问题进行流量计算。为了捕获结构变形,已将增强假定固体壳单元实现到固体求解器中,该单元以其无锁定和出色的弯曲特性而闻名。动态计算松弛参数的Aitken松弛方法用于松弛FSI耦合中的实体位移。与具有固定松弛参数的传统Subiterative程序相比,这有助于Subiteration程序更快地收敛。使用具有实验得出的参数的Fung型材料模型作为本构模型来捕获实际的固体变形。通过患者特定数据得出的二尖瓣主动脉瓣(BAV)模型的打开阶段和心包生物人工瓣膜模型得到模拟生理流动条件下具有实际材料参数的算法。观察到,瓣膜在35毫秒内达到其完全打开位置,这类似于生理打开。生物假体瓣膜达到完全圆形的孔,而BAV在其完全打开位置获得椭圆形的孔。在BAV中,在心脏收缩高峰期观察到强烈的涡旋模式,并在窦管交界处观察到回流区。本文提出的工作可以看作是一个平台,在生理条件下可以从该平台对复杂的患者特定数据进行建模,并且可以作为一个包括可以模拟完整心动周期的接触力学的基础。

著录项

  • 作者

    Govindarajan, Vijay.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Biomedical.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 100 p.
  • 总页数 100
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号