首页> 外文学位 >Reverse engineering gene networks using genomic time-course data.
【24h】

Reverse engineering gene networks using genomic time-course data.

机译:使用基因组时程数据进行逆向工程基因网络。

获取原文
获取原文并翻译 | 示例

摘要

Gene regulatory networks are collections of genes that interact, whether directly or indirectly, with each other and with other substances in the cell. Such gene-to-gene interactions play an important role in a variety of biological processes, as they regulate the rate and degree to which genes are transcribed and proteins are created. By measuring gene expression over time, it may be possible to reverse engineer, or infer, the structure of the gene network involved in a particular cellular process. With the development of microarray and next-generation sequencing technologies, it has become possible to conduct longitudinal experiments to measure the expression of thousands of genes simultaneously over time. However, due to the high dimensionality of gene expression data, the limited number of biological replicates and time points typically measured, and the complexity of biological systems themselves, the problem of reverse engineering networks from transcriptomic data demands a specialized suite of appropriate statistical tools and methodologies.;Two methods are proposed that use directed graphical models of stochastic processes, known as dynamic Bayesian networks, and first-order linear models to represent gene regulatory networks. In the first method, an algorithm is developed based on a hierarchical Bayesian framework for a Gaussian state space model. Hyperparameters are estimated using an empirical Bayes procedure, and parameter posterior distributions determine the presence or absence of gene-to-gene interactions. In the second method, a simulation-based approach known as Approximate Bayesian Computing based on Markov Chain Monte Carlo sampling is modified to the context of gene regulatory networks. Because no likelihood calculation is required, this method permits inference even for networks where no distributional assumptions are made. The performance of the proposed approaches is investigated via simulations, and both methods are applied to real longitudinal expression data. The two methods, while not comparable, are complementary, and help illustrate the need for a variety of network inference methods adapted for different contexts.
机译:基因调控网络是彼此或与细胞中其他物质直接或间接相互作用的基因的集合。这样的基因间相互作用在各种生物学过程中都起着重要作用,因为它们调节了基因转录和蛋白质产生的速率和程度。通过测量一段时间内的基因表达,可以逆向工程或推断特定细胞过程中涉及的基因网络的结构。随着微阵列和下一代测序技术的发展,进行纵向实验以同时测量数千个基因的表达已成为可能。然而,由于基因表达数据的高维度,通常测量的生物学复制品和时间点的数量有限以及生物学系统本身的复杂性,转录组数据逆向工程网络的问题需要一套专门的适当的统计工具和提出了两种方法,它们使用随机过程的定向图形模型(称为动态贝叶斯网络)和代表基因调控网络的一阶线性模型。在第一种方法中,针对高斯状态空间模型,基于分层贝叶斯框架开发了一种算法。使用经验贝叶斯方法估计超参数,参数后验分布确定基因间相互作用的存在与否。在第二种方法中,将基于马尔可夫链蒙特卡洛采样的基于仿真的方法(称为近似贝叶斯计算)修改为基因调控网络的背景。因为不需要似然计算,所以即使对于没有进行分布假设的网络,该方法也可以进行推理。通过仿真研究了所提出方法的性能,并将这两种方法都应用于真实的纵向表达数据。这两种方法虽然不具有可比性,但却是相辅相成的,有助于说明需要各种适用于不同上下文的网络推理方法。

著录项

  • 作者

    Rau, Andrea.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Statistics.;Genetics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号