首页> 外文学位 >Metal decoration of exfoliated graphite nanoplatelets (xGnP) for fuel cell application.
【24h】

Metal decoration of exfoliated graphite nanoplatelets (xGnP) for fuel cell application.

机译:用于燃料电池的片状石墨纳米片(xGnP)的金属装饰。

获取原文
获取原文并翻译 | 示例

摘要

The synthesis and characterization of metal particles at nanometer length scale has been the object of much research in modern nanotechnology due to their great impact on new nanoscale scientific and technological applications. Nanoscale metal particles possess unique optical, thermal, electronic, magnetic properties and chemical reactivity since the size of the resulting materials is on the same order as the fundamental interaction distances that give rise to physical properties and thus shows the quantum size effect which is not observed in their bulky status. Therefore, an effective synthetic method is required to obtain uniform small metal powders with controlled size and a narrow size distribution and also to produce nanocomposites consisting of either metals or metal oxides supported on carbons or metals dispersed on metal oxides for a variety of applications in chemical industries, automobiles, energy and power generating devices, hydrogen economy as well as for sensors.;On the other hand, although their excellent mechanical, thermal and electrical conductivity, excellent corrosion and oxidation resistance, and low impurity levels which are required as a breakthrough material to increase performance of next generation energy devices, exfoliated graphite nanoplatelet (xGnP) has not been studied as deeply as recent new nano structured carbon materials such as single wall carbon nanotubes (SWNT), multi-wall carbon nanotubes (MWNT), carbon nanohorn (CNH), graphite nanofiber (GNF), and fullerenes. In addition, xGnP is much cost-effective compared to other carbon nanostructures. Hence, it is interesting to evaluate the applicability of xGnP as a support material for fuel cell which is one of promising energy devices for the future.;In this research, a new simple, efficient and economic way is presented for the synthesis of noble metal nanoparticles such as Pt, Ru, Pd, etc and their deposition on various carbon supports and metal oxides via microwave heating in the presence of various types of room temperature ionic liquids (RTIL). The resulting metal nanocrystals were characterized by means of UV-vis spectroscopy, transmission electron microscopy (TEM), powder x-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry measurement. Homogeneous metal nanocrystals with sizes of 0.9∼3nm were synthesized and deposited on various carbon and metal oxide support materials through the reduction of the corresponding metal precursors. The size of metal nanocrystals could be easily and finely tuned by simply controlling experimental factors such as the concentration of RTIL.;xGnP-supported Pt based catalysts were prepared and tested for utilization in a direct methanol fuel cell. They showed much higher catalytic activity compared to commercial carbon black supported catalysts. Excellent activity of the xGnP-supported catalysts over the commercial catalysts originates from the morphology of xGnP facilitating contact between the reactant and catalytically active phase as well as the improved interaction between xGnP and metallic phases. This result proves the potential of xGnP as a support to replace carbon black. xGnP nanocomposites with metal nanocrystals may find potential applications as catalysts for other chemical reactions.
机译:纳米长度尺度的金属颗粒的合成和表征由于其对新的纳米尺度的科学和技术应用的巨大影响,已经成为现代纳米技术研究的对象。纳米级金属粒子具有独特的光学,热,电子,磁性和化学反应性,因为所得材料的尺寸与产生物理性能的基本相互作用距离处于同一数量级,因此显示出未观察到的量子尺寸效应处于大体积状态。因此,需要有效的合成方法以获得具有受控尺寸和窄尺寸分布的均匀的小金属粉末,并且还需要制备由金属或负载在碳上的金属氧化物或分散在金属氧化物上的金属组成的纳米复合材料,以用于多种化学用途。工业,汽车,能源和发电设备,氢的经济性以及用于传感器。另一方面,尽管它们具有优异的机械,导热和导电性,优异的耐腐蚀和抗氧化性以及低杂质含量,但这些都是突破性的要求作为提高下一代能源设备性能的材料,片状石墨纳米片(xGnP)的研究尚未像最近的新型纳米结构碳材料(如单壁碳纳米管(SWNT),多壁碳纳米管(MWNT),碳纳米角)得到深入研究(CNH),石墨纳米纤维(GNF)和富勒烯。此外,与其他碳纳米结构相比,xG​​nP具有很高的成本效益。因此,评估xGnP作为燃料电池的支撑材料的适用性很有趣,燃料电池是未来有希望的能源设备之一。;在这项研究中,提出了一种新的,简单,高效和经济的合成贵金属的方法在各种类型的室温离子液体(RTIL)存在下,通过微波加热将纳米粒子(如Pt,Ru,Pd等)沉积在各种碳载体和金属氧化物上。通过紫外可见光谱,透射电子显微镜(TEM),粉末X射线衍射(XRD),X射线光电子能谱(XPS)和循环伏安法测量来表征所得的金属纳米晶体。通过还原相应的金属前体,合成了尺寸为0.9〜3nm的均相金属纳米晶体,并沉积在各种碳和金属氧化物载体材料上。通过简单地控制诸如RTIL的浓度等实验因素,可以轻松而精细地调节金属纳米晶体的尺寸。制备了xGnP负载的Pt基催化剂,并测试了其在直接甲醇燃料电池中的利用率。与市售的炭黑负载催化剂相比,它们具有更高的催化活性。 xGnP负载的催化剂优于市售催化剂的出色活性源于xGnP的形态,该形态促进了反应物与催化活性相之间的接触以及xGnP与金属相之间的相互作用得到改善。该结果证明了xGnP作为替代炭黑的载体的潜力。具有金属纳米晶体的xGnP纳米复合材料可能找到潜在的用途,可作为其他化学反应的催化剂。

著录项

  • 作者

    Do, In-Hwan.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号