首页> 外文学位 >Proteomics and genetic studies of dystroglycan function in the nervous system.
【24h】

Proteomics and genetic studies of dystroglycan function in the nervous system.

机译:蛋白质组学和遗传研究神经系统中的dystroglycan功能。

获取原文
获取原文并翻译 | 示例

摘要

Muscular dystrophies are a group of diseases that are often caused by loss-of-function mutations affecting the dystrophin glycoprotein complex (DGC). The common feature of the diseases is muscle degeneration, which is often associated with mental retardation and various retinal defects, including ones of synaptic transmission. However, the mechanisms of the disease remain largely unknown, especially those in the central nervous system. I have focused on dystroglycan (DG), the transmembrane protein in the DGC that links the cytoskeleton to the extracellular matrix and is essential for muscle survival and brain development. I have used proteomics and Drosophila genetics to study DG function in the brain and retina.;Muscular dystrophies show not only impaired retinal synaptic transmission and several DG-related congenital muscular dystrophies also display retinal structural defects. To further understand the roles of DG in the retina, I used Drosophila eye as a model and demonstrated for the first time that DG is required cell-autonomously for photoreceptor morphogenesis in the developing visual system. Deficiency of DG in the eye causes severe disruption of retinal structure, aberrant lens formation and abolition of electroretinogram in the adult fly eye. These adult defects appear derived from autonomous photoreceptor cell (PRC) defects in the early pupa including size arrest, loss of polarity and progressive degeneration. All defects in the eye, however, can be reversed by re-expression of wild type DG in DG-deficient PRCs, suggesting DG functions cell-autonomously in PRCs and non-autonomously for lens. In the 3rd instar larvae DG is present in the apical tips and the basal membranes of PRCs, two polarized locations opposing the extracellular matrix. At the pupal stage it continues to mainly distribute at the apical rhabdomere and basal membrane of PRCs. Over-expression of DG leads to larger ommatidia but the PRC number remains unchanged, suggesting that DG is both necessary for and sufficient to promote PRC expansion. By rescue experiments, I demonstrated that the extracellular DG alone could not rescue DG-deficient eye defects, whereas the intracellular DG can substantially ameliorate PRC degeneration and structural defects while some PRCs remain disorganized, a sign of disrupted PRC planar polarity in absence of the extracellular DG. Therefore, our data suggest that the degeneration and planar polarity disruption in DG-deficient PRCs are two independent processes that appear to require the respective function of intracellular and extracellular DG. In summary, our experiments demonstrated several novel findings and provided the basis for future investigations on DG function and the molecular mechanisms of nervous system defects in muscular dystrophies.;Using proteomics I found that beta-DG is directly associated with the GTPase dynamin 1 in the retina and in the brain together with alpha-DG and Grb2, and immunohistochemically beta-DG was colocalized with dynamin 1 in the outer plexiform layer where photoreceptor terminals are localized. Moreover, loss of DG in differentiated DG-null embryonic stem cells significantly increases dynamin-mediated transferrin-uptake and re-expression of DG in null cells by infection with an adenovirus containing DG reduced transferrin uptake to levels seen in wild-type cells. This result implies that one of mechanisms in muscular dystrophy might be the altered synaptic vesicle endocytosis, especially in the retina where synaptic transmission defect has been known for decades.
机译:肌营养不良是通常由影响肌营养不良蛋白糖蛋白复合物(DGC)的功能丧失突变引起的一组疾病。该疾病的共同特征是肌肉变性,通常与智力低下和各种视网膜缺陷有关,包括突触传递。然而,该疾病的机制仍是未知的,特别是在中枢神经系统中。我主要研究dystroglycan(DG),DGC中的跨膜蛋白,该蛋白将细胞骨架连接到细胞外基质,对肌肉存活和大脑发育至关重要。我已经使用蛋白质组学和果蝇遗传学来研究DG在脑和视网膜中的功能。肌营养不良不仅显示出视网膜突触传递受损,而且与DG相关的先天性肌营养不良也显示出视网膜结构缺陷。为了进一步了解DG在视网膜中的作用,我使用果蝇眼作为模型,并首次证明了在发育中的视觉系统中,DG是细胞自主形成光感受器形态发生所必需的。眼睛中DG的缺乏会导致成年蝇眼严重破坏视网膜结构,异常晶状体形成和消除视网膜电图。这些成年缺陷似乎源自from早期的自主性感光细胞(PRC)缺陷,包括尺寸停滞,极性丧失和进行性变性。然而,在DG缺乏的PRCS中野生型DG的重新表达可以逆转眼中的所有缺陷,这表明DG在PRCS中细胞自主地起作用,而对于晶状体则是非自主地起作用。在三龄幼虫中,DG存在于PRCs的顶端和基膜中,与细胞外基质相对,有两个极化的位置。在the期,它继续主要分布在中华人民共和国的根尖横纹肌和基底膜。 DG的过度表达会导致更大的眼痛,但PRC的数量保持不变,这表明DG是促进PRC扩张的必要条件和充分条件。通过救援实验,我证明仅细胞外DG不能挽救缺乏DG的眼缺陷,而细胞内DG可以大大改善PRC的变性和结构缺陷,而某些PRC仍然杂乱无章,这是在缺乏细胞外的情况下PRC平面极性被破坏的迹象DG因此,我们的数据表明,DG缺失的PRCs的变性和平面极性破坏是两个独立的过程,似乎需要细胞内和细胞外DG的各自功能。总之,我们的实验证明了一些新颖的发现,并为以后研究DG营养和肌肉营养不良的神经系统缺陷的分子机制提供了基础。使用蛋白质组学,我发现β-DG与GTPase dynamin 1直接相关。视网膜和大脑中的α-DG和Grb2以及免疫组织化学方法将β-DG与动力蛋白1共同定位在外部神经元层(光感受器末端位于其中)。此外,分化为无DG的胚胎干细胞中DG的缺失显着增加了dynamin介导的转铁蛋白的摄取,并且通过用含DG的腺病毒感染将DG在空细胞中重新表达降低了转铁蛋白的摄取,使其达到了野生型细胞中的水平。该结果暗示,肌营养不良症的机制之一可能是突触小泡内吞的改变,特别是在数十年来已知突触传递缺陷的视网膜中。

著录项

  • 作者

    Zhan, Yougen.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号