首页> 外文学位 >Engineering multi-step electron tunneling systems in proteins.
【24h】

Engineering multi-step electron tunneling systems in proteins.

机译:在蛋白质中工程化多步电子隧穿系统。

获取原文
获取原文并翻译 | 示例

摘要

Multi-step electron tunneling, or "hopping," has become a fast-developing research field with studies ranging from theoretical modeling systems, inorganic complexes, to biological systems. In particular, the field is exploring hopping mechanisms in new proteins and protein complexes, as well as further understanding the classical biological hopping systems such as ribonuclease reductase, DNA photolyases, and photosystem II. Despite the plethora of natural systems, only a few biologically engineered systems exist. Engineered hopping systems can provide valuable information on key structural and electronic features, just like other kinds of biological model systems. Also, engineered systems can harness common biologic processes and utilize them for alternative reactions. In this thesis, two new hopping systems are engineered and characterized.;The protein Pseudomonas aeruginosa azurin is used as a building block to create the two new hopping systems. Besides being well studied and amenable to mutation, azurin already has been used to successfully engineer a hopping system. The two hopping systems presented in this thesis have a histidine-attached high potential rhenium 4,7-dimethyl-1,10-phenanthroline tricarbonyl [Re(dmp)(CO)3] + label which, when excited, acts as the initial electron acceptor. The metal donor is the type I copper of the azurin protein. The hopping intermediates are all tryptophan, an amino acid mutated into the azurin at select sites between the photoactive metal label and the protein metal site. One system exhibits an inter-molecular hopping through a protein dimer interface; the other system undergoes intra-molecular multi-hopping utilizing a tryptophan "wire." The electron transfer reactions are triggered by excitation of the rhenium label and monitored by UV-Visible transient absorption, luminescence decays measurements, and time-resolved Infrared spectroscopy (TRIR). Both systems were structurally characterized by protein X-ray crystallography.
机译:多步电子隧穿或“跳跃”已成为一个快速发展的研究领域,其研究范围从理论模型系统,无机配合物到生物系统。特别是,该领域正在探索新蛋白质和蛋白质复合物中的跳跃机制,并进一步了解经典的生物跳跃系统,例如核糖核酸酶还原酶,DNA光解酶和光系统II。尽管自然系统过多,但仅存在少数经过生物工程改造的系统。像其他种类的生物模型系统一样,工程化的跳跃系统可以提供有关关键结构和电子特征的有价值的信息。而且,工程系统可以利用常见的生物过程并将其用于替代反应。本文设计并表征了两个新的跳跃系统。铜绿假单胞菌蛋白天青蛋白被用作构建两个新跳跃系统的基础。除了经过充分研究和易于突变外,Azurin已经被用于成功设计跳频系统。本文提出的两个跳跃系统具有一个与组氨酸相连的高电位4,4,7-二甲基-1,10-菲咯啉三羰基[Re(dmp)(CO)3] +标记,当被激发时,它充当初始电子受体。金属供体是天青蛋白的I型铜。跳跃中间体都是色氨酸,是在光敏金属标记和蛋白质金属位点之间的选择位点突变成天青蛋白的氨基酸。一种系统在蛋白质二聚体界面上表现出分子间跳跃。另一个系统利用色氨酸“导线”进行分子内多跳。电子转移反应由excitation标记的激发触发,并通过紫外可见瞬态吸收,发光衰减测量和时间分辨红外光谱(TRIR)进行监控。两种系统的结构均通过蛋白质X射线晶体学表征。

著录项

  • 作者

    Williamson, Heather R.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Physical chemistry.;Biochemistry.;Biophysics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号