首页> 外文学位 >Structure-property relationships in anion exchange membranes for electrochemical energy conversion and storage.
【24h】

Structure-property relationships in anion exchange membranes for electrochemical energy conversion and storage.

机译:阴离子交换膜中用于电化学能量转换和存储的结构-性质关系。

获取原文
获取原文并翻译 | 示例

摘要

Polymer electrolyte membrane (PEM) fuel cells are promising candidates for powering automotive vehicles, but their advancement has been hindered by the costs associated with their platinum-based electrocatalysts. One strategy to resolve this problem is to replace the conventional acidic PEM with an alkaline anion exchange membrane (AEM) because fuel cells operated in alkaline media do not require platinum group metal catalysts. A significant challenge to realizing this concept is to design and implement an AEM that is chemically robust under alkaline conditions and that facilitates high ionic conductivity.;This dissertation presents a scientific approach to address the aforementioned problems through investigation of alternative cations, beyond quaternary trimethylammonium, to understand what chemical features influence ion conductivity and alkaline stability. It was postulated that selecting cations with larger free base conjugate pKA values (i.e., greater basicity) would yield improved AEM alkaline stability and ionic conductivity. The pKA value accounts for the steric hindrance, inductive, and resonance features of an organic cation and these features influence a cation's interaction with hydroxide. UdelRTM polysulfone (PSF) and poly(2,6-dimethyl 1,4-phenylene) oxide (PPO) were selected as the model polymer backbones because they can be tailored with different cation groups. The types of cations assessed were of the quaternary ammonium and phosphonium types and 1-methylimidazolium. The prepared AEMs demonstrated a direct correlation between the cation's free base conjugate pKA and anion conductivity for most cations assessed. Alkaline stability was assessed through multi-dimensional NMR to determine the degradation products in AEMs. NMR confirmed that the cation groups degraded through fundamentally different degradation mechanisms dependent upon their chemical make-up. Because the degradation mechanisms were different, the rate of degradation of the cation groups did not demonstrate a correlation to the cation's free base conjugate pKA. If the cations did proceed through the same degradation mechanism, then a correlation was observed. Additionally, it was discovered that the cation groups in PSF and PPO triggered polymer backbone degradation in alkaline despite the resiliency of both these pristine polymers in alkaline solutions. The AEMs prepared were successfully demonstrated in several electrochemical energy storage and conversion technologies (including alkaline fuel cell, alkaline water electrolyzer, and the all-vanadium redox flow battery).
机译:聚合物电解质膜(PEM)燃料电池是为汽车提供动力的有前途的候选者,但其进展一直受到与其铂基电催化剂相关的成本的阻碍。解决该问题的一种策略是用碱性阴离子交换膜(AEM)代替常规的酸性PEM,因为在碱性介质中运行的燃料电池不需要铂族金属催化剂。要实现这一概念,一项重大挑战是设计和实施一种在碱性条件下具有化学稳健性并促进高离子电导率的AEM。该论文提出了一种科学的方法,通过研究季铵三甲基铵以外的其他阳离子来解决上述问题,了解哪些化学特征会影响离子电导率和碱稳定性。据推测,选择具有更大的游离碱共轭物pKA值(即,更大的碱度)的阳离子将产生改善的AEM碱性稳定性和离子电导率。 pKA值说明了有机阳离子的空间位阻,电感和共振特征,这些特征影响阳离子与氢氧化物的相互作用。选择UdelRTM聚砜(PSF)和聚(2,6-二甲基1,4-亚苯基)氧化物(PPO)作为模型聚合物主链,因为它们可以根据不同的阳离子基团进行定制。所评估的阳离子类型为季铵和phospho类型以及1-甲基咪唑鎓。对于大多数评估的阳离子,制备的AEMs证明了阳离子的游离碱共轭物pKA和阴离子电导率之间存在直接的关系。通过多维NMR评估碱性稳定性,以确定AEM中的降解产物。 NMR证实阳离子基团通过根本不同的降解机理降解,这取决于它们的化学组成。由于降解机理不同,因此阳离子基团的降解速率未显示与阳离子的游离碱共轭物pKA相关。如果阳离子确实通过相同的降解机理进行,则观察到相关性。另外,发现尽管这些原始聚合物在碱性溶液中都具有弹性,但是PSF和PPO中的阳离子基团触发了碱性下的聚合物主链降解。所制备的AEM在多种电化学能量存储和转换技术(包括碱性燃料电池,碱性水电解槽和全钒氧化还原液流电池)中得到了成功证明。

著录项

  • 作者

    Arges, Christopher George.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Engineering Chemical.;Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 340 p.
  • 总页数 340
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号