首页> 外文学位 >Differing Photo-oxidation Mechanisms: Electron Transfer in Titanium Dioxide vs. Modified Titanium Dioxide.
【24h】

Differing Photo-oxidation Mechanisms: Electron Transfer in Titanium Dioxide vs. Modified Titanium Dioxide.

机译:不同的光氧化机理:二氧化钛与改性二氧化钛中的电子转移。

获取原文
获取原文并翻译 | 示例

摘要

Anatase phase undoped and iron-doped titanium dioxide (TiO2/Fe-TiO 2) nanoparticles were synthesized, characterized, and probed with the objective of testing their photo activity in aqueous solutions. Fe-TiO 2 results indicate iron activates molecular oxygen in the oxidation of methanol with 0.5% Fe-TiO2 increasing photo efficiency by nearly three times that of undoped TiO2. Fe-TiO2 doped with 1.0 % Fe:Ti increase efficiency by a factor of two. An interband state has been identified due to an Fe*O2 adduct at 1.48 eV. In the absence of oxygen, the Fe3+/2+ reduction band becomes an electron hole recombination site.;Characterization was conducted using analytical, wet lab, and theoretical techniques. The morphology, band gap, and particle sizes were confirmed using Raman and UV-vis spectroscopies. Raman peaks occurring at 144,197,399,514, and 627 cm-1 were due to anatase Eg, Eg, B1g, A1g, and Eg respectively and identified as anatase phase. Further fitting of the Raman spectra allowed for the comparison of peak areas which allow analysis of exposed facets of the crystal. Upon examination, the (101) and (001) faces of the anatase crystal do not change with the doping of the particle. The UV-vis spectrum shows a shift toward the visible from particles doped with iron. Metal doping increases absorption of light to longer wavelengths. For undoped TiO2 the band gap occurs at 340 nm (3.64 eV); the band gap for both 0.5% and 1.0% Fe-doped particles are overlapped at 345nm (3.59 eV). A differentiation of the UV-vis spectrum coupled with the Brus method allowed for the calculation of the radius of the particle given the electron and hole effective masses. Particle radius was calculated as 0.86 nm for undoped TiO2 and 0.90 nm for Fe-doped particles.;The inclusion of both Fe and Au extended absorption into the near visible spectrum however; catalytic reactions with visible photons have not been shown to give a significant boost to the increase of photo activity. UV excited electrons account for the bulk of the increase in photoreactions specifically concerning Fe-TiO2 photo kinetic experiments. Iron doped TiO 2 photo catalyst were consistently more photo reactive than undoped TiO2 in the oxidation of methanol. TiO2 doped at 0.5% was almost three times more efficient while 1.0% was two time more efficient. The decrease in efficiency between 0.5% and 1.0% may possibly be an effect of a stabilization of charges on the surface of the particle. Iron adsorbs on the (001) face in oxygen vacancies. With a single iron atom on the (001) surface an electron can be transferred to an oxygen scavenger. With more than one iron atom the vacancy is stabilized and oxygen atoms are not attracted decreasing the activity of the catalyst.;Photo catalytic experiments were conducted in both oxygen and nitrogen saturated environments revealing a difference in mechanism between methanol oxidized in the presence of Fe-TiO2 and TiO2. TiO 2 either reduces water or stores the electron for reduction purposes. The newly identified interband state at +1.48 eV acts as an efficient electron-hole recombination site in the absence of oxygen for Fe-TiO2. Nitrogen purging greatly reduces methanol oxidation to formaldehyde leading to a quenching of the reaction. This interband state was located by removing fluorescence from the Raman spectra using a log normal.;Finally, gold was photo deposited onto the surface of 0.5% Fe-TiO 2. The catalyst is more than two times efficient than undoped TiO 2 but does not surpass the initial efficiency of iron doping by itself. This may be due to the overall deactivation of the catalyst which has been observed in the literature. However, gold doping does not completely quench the reaction nor does it block oxygen from reaching iron on the surface of the nanoparticle. This is information that may be used in further doping of Fe-TiO2.
机译:合成,表征和探测了锐钛矿相无掺杂和铁掺杂的二氧化钛(TiO2 / Fe-TiO 2)纳米粒子,目的是测试它们在水溶液中的光活性。 Fe-TiO 2的结果表明,铁可以在甲醇氧化反应中激活分子氧,其中0.5%Fe-TiO2的光效率提高了近三倍,是未掺杂的TiO2。掺有1.0%Fe:Ti的Fe-TiO2将效率提高了两倍。由于在1.48 eV的Fe * O2加合物,已确定了带间状态。在没有氧气的情况下,Fe3 + / 2 +的还原带成为电子空穴的复合位点。;使用分析,湿实验室和理论技术进行了表征。使用拉曼光谱和紫外可见光谱法确认了形态,带隙和粒径。拉曼峰分别出现在144,197,399,514和627 cm-1处,分别是由于锐钛矿Eg,Eg,B1g,A1g和Eg引起的,并被确定为锐钛矿相。拉曼光谱的进一步拟合允许比较峰面积,从而可以分析晶体的暴露面。经检查,锐钛矿晶体的(101)和(001)面不会随颗粒的掺杂而变化。紫外-可见光谱显示出掺杂铁的颗粒向可见光的移动。金属掺杂增加了对更长波长的光的吸收。对于未掺杂的TiO2,带隙出现在340 nm(3.64 eV)处; 0.5%和1.0%的铁掺杂粒子的带隙在345nm(3.59 eV)处重叠。 UV-vis光谱的微分与Brus方法相结合,可以在给定电子和空穴有效质量的情况下计算粒子的半径。对于未掺杂的TiO2,颗粒半径计算为0.86 nm,对于掺铁的颗粒,颗粒半径计算为0.90 nm。尚未显示与可见光子的催化反应能显着促进光活性的增加。紫外线激发的电子占了光反应增加的大部分,特别是与Fe-TiO2光动力学实验有关。在甲醇的氧化中,铁掺杂的TiO 2光催化剂始终比未掺杂的TiO2具有更高的光反应性。掺杂0.5%的TiO2效率几乎提高了三倍,而1.0%的效率提高了两倍。效率降低0.5%至1.0%可能是颗粒表面电荷稳定的效果。铁在氧空位上吸附在(001)面上。在(001)表面上只有一个铁原子时,电子可以转移到除氧剂中。具有一个以上的铁原子时,空位得以稳定并且氧原子未被吸引,从而降低了催化剂的活性。;在氧和氮饱和的环境中进行了光催化实验,揭示了在存在Fe-的情况下甲醇被氧化的机理之间的差异。 TiO2和TiO2。 TiO 2还原水或存储电子以达到还原目的。在+1.48 eV处,新确定的带间状态在Fe-TiO2没有氧的情况下可作为有效的电子-空穴复合位点。氮气吹扫大大降低了甲醇氧化成甲醛的速度,从而导致反应淬灭。通过使用对数法线从拉曼光谱中去除荧光来确定该带间状态。最后,金被光沉积到0.5%Fe-TiO 2的表面上。该催化剂的效率是未掺杂TiO 2的两倍以上,但没有本身超过了铁掺杂的初始效率。这可能是由于在文献中观察到的催化剂的整体失活。然而,金掺杂不能完全终止反应,也不能阻止氧到达纳米颗粒表面上的铁。这是可用于进一步掺杂Fe-TiO2的信息。

著录项

  • 作者

    Dukes, Faith Marie.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Chemistry Inorganic.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号