首页> 外文学位 >Bacterial Cellulose: A Model for Deconstructing Cellulose Native Structure.
【24h】

Bacterial Cellulose: A Model for Deconstructing Cellulose Native Structure.

机译:细菌纤维素:解构纤维素天然结构的模型。

获取原文
获取原文并翻译 | 示例

摘要

Advancements in colloidal and polymer chemistry have expanded the commercial applications of cellulose to include the development of high strength composite films for the production of energy efficient liquid displays, high-fidelity biosensors and acoustic diaphragms for high quality audio speakers. Additionally, cellulose is the most abundant polymer on earth making it the most logical candidate precursor for the replacement of fossil fuels. Although the commercial promise of cellulose is high, the establishment of cellulose as a global commodity is significantly hindered by the inefficiencies in cellulose liberation and processing. The current model associated with cellulose liberation from lignin and hemicellulose relies on the use of highly basic reagents resulting in significant alterations to cellulose native structure. The research detailed here examines the inherent properties of cellulose in its most native state using bacterial cellulose (BC) synthesized by Gluconacetobacter hansenii (G. hansenii) strain ATCC 23769 as a model; with the intent of improving cellulose liberation and saccharification techniques through the understanding of the biochemical complexities of in vivo cellulose. Previously characterized for the protection BC provides G. hansenii against mechanical, chemical and physiological stress, the degree of resistance BC affords G. hansenii against antibiotics is investigated here. The addition of kanamycin (kan) at a concentration of 50 microg ml--1 to wild type cultures of G. hansenii results in the selection of high cellulose producing phenotypes. Furthermore, it is demonstrated that when cultured in the presence of 5% (v/v) cellulase, a complete loss in kan resistance is observed in wild type cultures of G. hansenii. The stability of BC structure when exposed to mechanical, chemical and thermal influence is also examined. An 88% drop in the intensity of the 1i0 peak (16.4°) of BC x-ray diffractograms is observed when BC samples are prepared by cryo-homogenization and pressed into film using 670 MPa of pressure, resulting in a 21% reduction in calculated crystallinity. A 100% improvement in the saccharification efficiency of cyro-homogenized BC despite a negligible change in observed degree of polymerisation (DP n) from 606 &
机译:胶体和聚合物化学的进步已经扩大了纤维素的商业应用范围,包括开发用于生产节能型液体显示器,高保真生物传感器和用于高质量音频扬声器的声膜的高强度复合膜。此外,纤维素是地球上最丰富的聚合物,使其成为替代化石燃料的最合乎逻辑的候选前体。尽管纤维素的商业前景很高,但是由于纤维素的释放和加工效率低下,纤维素作为全球商品的建立受到了极大的阻碍。当前与木质素和半纤维素释放纤维素相关的模型依赖于使用高度碱性的试剂,从而导致纤维素天然结构发生重大变化。此处详细的研究使用汉逊氏糖杆菌(G. hansenii)菌株ATCC 23769合成的细菌纤维素(BC)检验了其最原始状态下的纤维素固有特性。通过了解体内纤维素的生化复杂性来改善纤维素的释放和糖化技术。先前以保护BC提供汉森氏菌抵抗机械,化学和生理压力为特征,此处研究了BC提供的汉森氏菌对抗生素的抵抗程度。在汉森氏菌的野生型培养物中加入浓度为50微克ml-1的卡那霉素(kan)导致选择了高纤维素表型。此外,已证明当在5%(v / v)纤维素酶的存在下培养时,在汉逊酵母的野生型培养物中观察到kan抗性的完全丧失。还检查了BC结构在受到机械,化学和热影响时的稳定性。当通过低温均质法制备BC样品并在670 MPa的压力下压成膜时,观察到BC X射线衍射图的1i0峰(16.4°)强度下降了88%,从而使计算值降低了21%结晶度。尽管观察到的聚合度(DP n)从606和190可以忽略不计,但在循环均质的BC中,糖化效率提高了100%。

著录项

  • 作者

    Graham, William Darnell.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Biology Botany.;Alternative Energy.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号