首页> 外文学位 >A process-based molecular model of nano-porous silicon carbide membranes.
【24h】

A process-based molecular model of nano-porous silicon carbide membranes.

机译:纳米多孔碳化硅膜的基于过程的分子模型。

获取原文
获取原文并翻译 | 示例

摘要

A broad class of important materials, such as silicon carbide (SiC), are fabricated by temperature-controlled pyrolysis of pre-ceramic polymers. In particular, fabrication of SiC membranes by pyrolysis of a polymer precursor that contains Si is quite attractive for separation of hydrogen from other gases. It has been quite difficult to extract atomistic-scale information about such SiC membranes, since they are amorphous. The research presented in this dissertation extends the ReaxFF reactive force field to describe the processes involved in the thermal decomposition of hydridopolycarbosilane (HPCS) to form SiC nanoporous membranes.;First, we carry out quantum mechanical calculations on models meant to capture the important reaction steps and structures. Then, we develop a model of the HPCS polymer and utilize ReaxFF to describe the thermal degradation and decomposition of the polymer as the system is heated by molecular dynamics (MD) simulations. In the next step, we use ReaxFF for reactive dynamics of HPCS over a wide range of temperature. We then simulate pyrolysis of the HPCS under conditions that closely mimic the conditions of the fabrication of nanoporous SiC membranes to produce amorphous SiC material. The pyrolysis results and the computed properties of the SiC ceramic are shown to be in good agreement with the experimental data.;To further test the validity of the model and to provide insight into improving the performance of the membrane, extensive MD simulations were carried out to compute the self-diffusivities of H2, CO2 and CH4 in the molecular model of SiC. The results indicate higher values of the diffusivity for H2. The morphology of the amorphous SiC layer is characterized by computing its accessible free volumes and the cavity distributions.;Finally, we use the molecular model of SiC and non-equilibrium MD simulations in order to study transport and separation in the membrane of two binary gaseous mixtures, namely, H2/CO2 and H2/CH4 at various temperatures and pressure drops, applied externally to the membrane. When compared with our own experimental data, the model is demonstrated to provide accurate predictions for various properties of interest and, in particular, for the separation factors of the mixtures. The model can be used to determine the optimal membrane's thickness.
机译:各种各样的重要材料,例如碳化硅(SiC),是通过对陶瓷前聚合物进行温度控制的热解而制成的。特别地,通过热解包含Si的聚合物前体来制造SiC膜对于将氢与其他气体分离是非常有吸引力的。提取有关这种SiC膜的原子级信息非常困难,因为它们是无定形的。本文的研究扩展了ReaxFF反应力场,描述了氢化聚碳硅烷(HPCS)热分解形成SiC纳米多孔膜的过程。首先,我们在模型上进行了量子力学计算,以捕捉重要的反应步骤。和结构。然后,我们开发了HPCS聚合物的模型,并利用ReaxFF描述了通过分子动力学(MD)模拟加热系统时聚合物的热降解和分解。下一步,我们将ReaxFF用于HPCS在较宽温度范围内的反应动力学。然后,我们在紧密模拟纳米多孔SiC膜制造条件以生产非晶SiC材料的条件下,模拟HPCS的热解。 SiC陶瓷的热解结果和计算性能与实验数据吻合良好。为了进一步验证模型的有效性并提供深入了解膜性能的信息,进行了广泛的MD模拟计算SiC分子模型中H2,CO2和CH4的自扩散率。结果表明,H2的扩散系数较高。通过计算无定形SiC层的可利用自由体积和空穴分布来表征其形态;最后,我们使用SiC的分子模型和非平衡MD模拟来研究两种二元气态在膜中的传输和分离混合物,即在各种温度和压降下的H2 / CO2和H2 / CH4混合物,从外部施加到膜上。当与我们自己的实验数据进行比较时,该模型被证明可以为感兴趣的各种特性(尤其是混合物的分离因子)提供准确的预测。该模型可用于确定最佳膜的厚度。

著录项

  • 作者

    Naserifar, Saber.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Chemical.;Chemistry Molecular.;Computer Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号