首页> 外文学位 >Fabrication of silicon carbide sintered supports and silicon carbide membranes.
【24h】

Fabrication of silicon carbide sintered supports and silicon carbide membranes.

机译:碳化硅烧结载体和碳化硅膜的制造。

获取原文
获取原文并翻译 | 示例

摘要

Efficient separation of hydrogen (H2) under high temperatures and pressures is important to the development of the clean-energy industry, and has been among the key drivers for research on inorganic membranes for the last two decades. Although substantial efforts have been devoted to date to the preparation of nanoporous membranes for H2 separation, the fabrication of high-temperature and steam-stable inorganic membranes with high hydrogen fluxes and large separation factors still remains a key challenge. Among all the potential candidates, silicon carbide (SiC) membranes show potential advantages for use in hydrogen separation processes under harsh and corrosive conditions such as, for example, the steam reforming and the water gas shift reactions commonly employed in H2 production; this is because SiC is a material that has high corrosion resistance, high thermal conductivity, high thermal shock resistance, and excellent chemical and mechanical stability, making it thus a promising material for application in industrial processes for clean energy production.;High-quality porous SiC supports are of great importance in the fabrication of hydrogen permselective SiC nanoporous membranes and their preparation has, thus, been a keen a key focus in this research. In this Thesis, we report on the preparation, via the pressureless sintering of beta-SiC powders, of SiC tubular supports that are both highly permeable and mechanically strong. Their transport characteristics were studied via inert-gas permeation tests, while their structure and surface morphology were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis. In addition, the effect of varying the composition of starting powders, the sintering temperature, and the amount of sintering aids utilized on the transport characteristics and the surface roughness of such sintered SiC porous supports were also systematically investigated. These tubular SiC supports exhibit high fluxes (a He permeance as high as 5.8x10-5 mol·m-2·s -1·Pa-1) and are mechanically strong (compressive strength as high as 106 MPa) to potentially withstand the pressure drops required in their use as membrane supports.;Utilizing these high-quality SiC sintered supports, nanoporous SiC membranes were prepared by the pyrolysis of thin ally-hydridopolycarbosilane (AHPCS) films coated on such supports, using a combination of slip-casting and dip-coating techniques coupled with periodic coatings of polystyrene sacrificial interlayers. The membranes prepared using these SiC supports are very permselective (a He/Ar separation factor as high as 2000) and exhibit a He permeance as high as 2.4x10-7 mol·m-2·s -1·Pa-1.
机译:在高温和高压下有效分离氢气(H2)对于清洁能源行业的发展很重要,并且在过去的二十年中一直是研究无机膜的主要驱动力之一。尽管迄今为止已经做出了巨大的努力来制备用于氢气分离的纳米孔膜,但是具有高氢通量和大分离因子的高温和蒸汽稳定的无机膜的制备仍然是关键的挑战。在所有潜在的候选材料中,碳化硅(SiC)膜在苛刻和腐蚀性条件下的氢分离过程中显示出潜在的优势,例如,在H2生产中通常使用的蒸汽重整和水煤气变换反应;这是因为SiC是一种具有高耐腐蚀性,高导热性,高抗热震性以及出色的化学和机械稳定性的材料,因此使其成为在清洁能源生产的工业过程中应用的有前途的材料。 SiC载体在氢选择性渗透SiC纳米多孔膜的制造中非常重要,因此,其制备一直是该研究的重点。在本论文中,我们报告了通过无压力烧结β-SiC粉末制备具有高渗透性和机械强度的SiC管状载体的方法。通过惰性气体渗透测试研究了它们的传输特性,同时通过原子力显微镜(AFM)和扫描电子显微镜(SEM)分析表征了它们的结构和表面形态。另外,还系统地研究了改变原料粉末的组成,烧结温度和所使用的烧结助剂的量对这种烧结的SiC多孔载体的传输特性和表面粗糙度的影响。这些管状SiC载体表现出高通量(He磁导率高达5.8x10-5 mol·m-2·s -1·Pa-1),并且机械强度高(抗压强度高达106 MPa),有可能承受压力利用这些高质量的SiC烧结载体,通过滑涂和浸涂相结合的方法,通过热解涂覆在此类载体上的烯丙基氢化聚碳硅烷(AHPCS)薄膜,制备了纳米多孔SiC膜。涂层技术与聚苯乙烯牺牲中间层的定期涂层相结合。使用这些SiC载体制备的膜具有非常高的选择性(He / Ar分离系数高达2000),并且He渗透率高达2.4x10-7 mol·m-2·s -1·Pa-1。

著录项

  • 作者

    Deng, Wangxue.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号