首页> 外文学位 >Gauss mixture image classification for distributed sensor networks.
【24h】

Gauss mixture image classification for distributed sensor networks.

机译:分布式传感器网络的高斯混合图像分类。

获取原文
获取原文并翻译 | 示例

摘要

Classification algorithms based on Gauss mixture models (GMMs) provide robust and analytically tractable solutions to image classification problems. Training a GMM might use the expectation-maximization (EM) algorithm or Gauss mixture vector quantization. Application of the EM algorithm is based on the assumption that the underlying data follow a Gauss mixture distribution. The goal is to fit a GMM to the data. Gauss mixture vector quantization is a Lloyd clustering algorithm, and it requires no assumptions about the statistics of the underlying data.; I first extend Gauss mixture vector quantization to design a tree-structured GMM-based classifier. Tree-structured classifiers provide a method to focus on the difficult regions of the training vector space by growing classification trees into those regions. I design a tree-structured Gauss mixture vector quantizer (TS-GMVQ) by first growing the tree into "difficult" regions, and then pruning it optimally, using the Breiman-Friedman-Olshen-Stone (BFOS) algorithm to avoid overfitting.; I then focus on the GMM-based classification problem for sensor networks. Previous work on the EM algorithm and Gauss mixture vector quantization has emphasized single sensor classification problems. I generalize the GMM-based classification problem to include multiple, distributed sensors. In particular, I consider a set of sensors, communicating with each other under rate constraints for the purpose of classification. Each sensor has a different noisy version of a common image and aims to classify the image based on its own noisy version and the help it receives from the other sensors. I view the sensor network classification problem as one in vector quantization and provide a Lloyd-optimal solution to minimize classification error for the given rate constraints. In particular, I use a TS-GMVQ to partition the vector space during the Lloyd design. I also include context dependence into my algorithm, making use of the concepts developed in conjunction with hidden Markov models.
机译:基于高斯混合模型(GMM)的分类算法为图像分类问题提供了可靠且易于分析的解决方案。训练GMM可能会使用期望最大化(EM)算法或高斯混合矢量量化。 EM算法的应用基于以下假设:基础数据遵循高斯混合分布。目标是使GMM适合数据。高斯混合矢量量化是一种劳埃德(Lloyd)聚类算法,它不需要对基础数据的统计进行任何假设。我首先扩展高斯混合矢量量化,以设计基于树结构的基于GMM的分类器。树状结构的分类器提供了一种方法,可以通过将分类树生长到训练矢量空间的困难区域上来专注于这些区域。我设计树结构的高斯混合矢量量化器(TS-GMVQ),方法是先将树生长到“困难”区域,然后使用Breiman-Friedman-Olshen-Stone(BFOS)算法进行优化修剪,以避免过度拟合。然后,我将重点介绍基于GMM的传感器网络分类问题。以前关于EM算法和高斯混合矢量量化的工作强调了单个传感器的分类问题。我将基于GMM的分类问题概括为包括多个分布式传感器。特别是,我考虑了一组传感器,它们在速率约束下相互通信以进行分类。每个传感器的通用图像都有不同的噪声版本,旨在根据其自身的噪声版本以及从其他传感器获得的帮助对图像进行分类。我将传感器网络分类问题视为矢量量化中的一个问题,并提供了Lloyd最优解决方案,以在给定速率约束下最小化分类误差。特别是在劳埃德(Lloyd)设计期间,我使用TS-GMVQ来划分向量空间。我还将上下文相关性纳入我的算法中,利用了与隐马尔可夫模型一起开发的概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号