首页> 外文学位 >High frequency computation in wave equations and optimal design for a cavity.
【24h】

High frequency computation in wave equations and optimal design for a cavity.

机译:波动方程的高频计算和型腔的优化设计。

获取原文
获取原文并翻译 | 示例

摘要

Two types of problems are studied in this thesis. One part of the thesis is devoted to high frequency computation. Motivated by fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beam methods which were originally designed for initial value problems of wave equations in the high frequency regime, we develop fast multiscale Gaussian beam methods for wave equations in bounded convex domains in the high frequency regime. To compute the wave propagation in bounded convex domains, we have to take into account reflecting multiscale Gaussian beams, which are accomplished by enforcing reflecting boundary conditions during beam propagation and carrying out suitable reflecting beam summation. To propagate multiscale beams efficiently, we prove that the ratio of the squared magnitude of beam amplitude and the beam width is roughly conserved, and accordingly we propose an effective indicator to identify significant beams. We also prove that the resulting multiscale Gaussian beam methods converge asymptotically. Numerical examples demonstrate the accuracy and efficiency of the method.;The second part of the thesis studies the reduction of backscatter radar cross section (RCS) for a cavity embedded in the ground plane. One approach for RCS reduction is through the coating material. Assume the bottom of the cavity is coated by a thin, multilayered radar absorbing material (RAM) with possibly different permittivities. The objective is to minimize the backscatter RCS by the incidence of a plane wave over a single or a set of incident angles and frequencies. By formulating the scattering problem as a Helmholtz equation with artificial boundary condition, the gradient with respect to the material permittivities is determined efficiently by the adjoint state method, which is integrated into a nonlinear optimization scheme. Numerical example shows the RCS may be significantly reduced.;Another approach is through shape optimization. By introducing a transparent boundary condition, the unbounded scattering problem from a cavity is reduced to a bounded domain problem. RCS reduction for the cavity is formulated as a shape optimization problem involving the Helmholtz equation. The existence of the minimizer is proved under an appropriate constraint. Descent directions of the objective function with respect to the boundary may be found via the domain derivative. It is used in a gradient-based optimization scheme to find the optimal shape of the cavity. Numerical examples show that the RCS is effectively reduced at different incident frequencies.
机译:本文研究了两种类型的问题。本文的一部分致力于高频计算。受快速多尺度高斯波包变换和多尺度高斯束方法的启发,这些方法最初是针对高频方案中波动方程的初值问题设计的,我们开发了快速多尺度高斯束方法用于高频方案中有界凸域中的波动方程。为了计算波在有界凸域中的传播,我们必须考虑反射多尺度高斯光束,这是通过在光束传播过程中强制执行反射边界条件并进行适当的反射光束求和来实现的。为了有效地传播多尺度光束,我们证明了光束幅度的平方幅度与光束宽度的比值是大致守恒的,因此,我们提出了一种有效的指标来识别重要光束。我们还证明了所得的多尺度高斯光束方法渐近收敛。数值算例说明了该方法的正确性和有效性。本文的第二部分研究了埋在地平面中的空腔的后向散射雷达截面(RCS)的减小。减少RCS的一种方法是通过涂层材料。假设腔体的底部涂有一层可能具有不同介电常数的薄的多层雷达吸收材料(RAM)。目的是通过平面波在单个或一组入射角和频率上的入射来最小化后向散射RCS。通过将散射问题表示为具有人工边界条件的亥姆霍兹方程,可以通过伴随态方法有效地确定相对于材料介电常数的梯度,并将其集成到非线性优化方案中。数值算例表明,RCS可能会大大降低。另一种方法是通过形状优化。通过引入透明边界条件,来自腔的无界散射问题被简化为有界域问题。模腔的RCS减少被公式化为涉及Helmholtz方程的形状优化问题。在适当的约束条件下证明了最小化器的存在。可以通过域导数找到目标函数相对于边界的下降方向。在基于梯度的优化方案中使用它来找到空腔的最佳形状。数值算例表明,在不同的入射频率下,RCS均有效降低。

著录项

  • 作者

    Lai, Jun.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Applied Mathematics.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号