首页> 外文学位 >Design, fabrication, and characterization of novel microcavities for silicon-based light emitters.
【24h】

Design, fabrication, and characterization of novel microcavities for silicon-based light emitters.

机译:硅基发光体的新型微腔的设计,制造和表征。

获取原文
获取原文并翻译 | 示例

摘要

The basic challenge in developing a Si-based light source is overcoming the emission inefficiency of crystalline Si due to its indirect band structure. Numerous efforts have led to an array of Si-compatible materials from which efficient light emission was attained; these materials include Si nanocrystals (Si-ncs), Er doped SiO2 (Er:SiO2), and strained Ge on Si. Based on two of the most promising Si-compatible light emitting materials, Si-nc and Er:SiO2, we designed novel microcavities with the potential to be used in laser designs. We developed fabrication processes for both Si-nc and Er:SiO2 materials and performed extensive material characterization to attain the parameters governing their behavior in the ADE-FDTD model. The cavities designed, fabricated, and characterized in this work consisted of an in-plane corner-cut square microcavity, microdisks and microtoroids, and a concentric microdisk structure designed for a two-stage, CMOS-compatible Si laser.;The waveguide-coupled corner-cut square cavity was fabricated in-plane using E-beam lithography and selective dry etching. Both the lithography and etch processes were optimized to achieve smooth and vertical cavity sidewalls. We experimentally characterized this structure using lensed tapered fibers and saw excellent agreement with the simulated predictions. We identified an optimum corner-cut length which improved the Q-factor for a square cavity by as much as 2x.;We then focused on developing light emitting devices using the Si-nc and Er:SiO2 materials. While neither of these materials on their own satisfies all the requirements for an electrically pumped, CMOS-compatible laser at telecommunication wavelength, we proposed a concentric microdisk design which leverages the advantages of both materials. In the proposed structure, EL from an inner Si-nc microdisk acts as an optical pump for an Er:SiO 2 laser in the outer microdisk. Using our modeling tools, we confirmed the proposed device behavior and optimized the geometry.;To demonstrate the feasibility of this device, we fabricated a series of preliminary light emitting structures, including Si-nc microdisks, Er:SiO 2 microdisks and --toroids, and Si-nc/Er:SiO2 concentric microdisks. We developed two experimental characterization techniques to analyze the whispering-gallery modes (WGMs), one based on free-space collection from the edge of the microdisk and the other based on evanescent coupling to a tapered pulled fiber. The tapered fiber pulling process was refined to allow for in situ monitoring of the transmission and fiber diameter, which drastically improved the reliability and repeatability of this process. We compared these characterization setups and identified the regimes of operation in which each is appropriate. Using these characterization setups, we observed spectrometer limited Q-factors as high as 2x103 for Si-nc microdisks, comparable to the highest Q-factors reported in the literature, and Q-factors as high as 3x106 for Er:SiO2 microtoroids, which are high enough to achieve lasing given an optimized Er concentration. We then developed a fabrication process for the Si-nc/Er:SiO2 concentric microdisks in accordance with our two-stage laser design. Characterization of these concentric microdisks confirmed many of our predictions, including the existence of Si-nc based pump modes and Er:SiO2 based signal modes, the mitigation of free carrier absorption (FCA) loss from the signal modes, and indirect excitation of the Er-based film via Si-nc luminescence. The existence of active and passive modes at both Si-nc based (pump: ∼800 nm) and Er:SiO2 based (signal: ∼1530 nm) wavelengths were in good agreement with the simulated predictions. The FCA loss, which is the dominant loss mechanism in Er doped Si-nc compositions, is almost entirely mitigated in the concentric microdisk structure by spatially separating the pump and signal modes. Having the pump and signal modes spatially separated allowed us to use the Si-nc luminescence as a optical pump for the Er:SiO 2 film. This indirect excitation mechanism was the first demonstration of an integrated two-stage pumping scheme applied to these materials. Finally, we developed a semi-analytical model to predict lasing thresholds in this concentric microdisk structure. Based on this analysis, we identify the material and device optimizations required to achieve lasing in the concentric microdisk structure. (Abstract shortened by UMI.)
机译:开发基于硅的光源的基本挑战是克服结晶硅由于其间接能带结构而导致的发射效率低下的问题。大量的努力导致了一系列的硅兼容材料,从中可以获得有效的发光。这些材料包括Si纳米晶体(Si-ncs),Er掺杂的SiO2(Er:SiO2)和Si上的应变Ge。基于两种最有前途的与Si兼容的发光材料Si-nc和Er:SiO2,我们设计了具有在激光设计中使用潜力的新型微腔。我们开发了用于Si-nc和Er:SiO2材料的制造工艺,并对材料进行了广泛的表征,以获得在ADE-FDTD模型中控制其行为的参数。在这项工作中设计,制造和表征的腔体包括一个平面内切角方形微腔体,微盘和微环面以及设计用于两阶段,兼容CMOS的Si激光器的同心微盘结构。使用电子束光刻和选择性干法刻蚀在平面内制造角切方腔。光刻和蚀刻工艺均经过优化,以实现平滑和垂直的腔体侧壁。我们使用带透镜的渐缩纤维对这种结构进行了实验表征,并与模拟预测非常吻合。我们确定了最佳的切角长度,将方形腔的Q因子提高了2倍。然后,我们专注于开发使用Si-nc和Er:SiO2材料的发光器件。尽管这些材料都不能单独满足电信波长电泵CMOS兼容激光器的所有要求,但我们提出了一种同心微盘设计,该设计利用了这两种材料的优势。在提出的结构中,来自内部Si-nc微型磁盘的EL用作外部微型磁盘中Er:SiO 2激光器的光泵。使用我们的建模工具,我们确认了拟议的器件性能并优化了几何形状。为了证明该器件的可行性,我们制造了一系列初步的发光结构,包括Si-nc微盘,Er:SiO 2微盘和-环形和Si-nc / Er:SiO2同心微型磁盘。我们开发了两种实验表征技术来分析耳语画廊模式(WGM),一种基于微盘边缘的自由空间收集,另一种基于渐逝耦合至锥形拉制光纤。锥形光纤拉制工艺经过改进,可以对传输和光纤直径进行现场监控,从而大大提高了该工艺的可靠性和可重复性。我们比较了这些特性设置,并确定了每种合适的工作方式。使用这些表征设置,我们观察到对于Si-nc微型磁盘,光谱仪限制的Q因子高达2x103,可与文献中报道的最高Q因子相媲美;对于Er:SiO2环形微透镜,其Q因子高达3x106。在优化的Er浓度下足够高以实现激光发射。然后,根据我们的两阶段激光设计,我们开发了Si-nc / Er:SiO2同心微型磁盘的制造工艺。这些同心微盘的表征证实了我们的许多预测,包括基于Si-nc的泵浦模式和基于Er:SiO2的信号模式的存在,减轻信号模式中的自由载流子吸收(FCA)损失以及间接激发Er Si-nc发光的铝基薄膜。基于Si-nc(泵:〜800 nm)和基于Er:SiO2(信号:〜1530 nm)波长的主动模式和被动模式都与模拟预测非常吻合。 FCA损耗是掺Er的Si-nc成分中的主要损耗机理,通过在空间上分离泵浦和信号模式,在同心微盘结构中几乎可以完全消除FCA损耗。使泵浦模式和信号模式在空间上分开,使我们能够将Si-nc发光用作Er:SiO 2膜的光学泵浦。这种间接激励机制是应用于这些材料的集成两级泵送方案的首次展示。最后,我们开发了一个半分析模型来预测这种同心微盘结构中的激光阈值。基于此分析,我们确定在同心微盘结构中实现激光发射所需的材料和设备优化。 (摘要由UMI缩短。)

著录项

  • 作者

    Marchena, Elton L.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号