首页> 外文学位 >Zinc oxide thin films and nanostructures for optoelectronic applications.
【24h】

Zinc oxide thin films and nanostructures for optoelectronic applications.

机译:用于光电应用的氧化锌薄膜和纳米结构。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this research focuses on investigating optical, electrical, and structural properties of Al doped ZnO (AZO) and developing novel approaches to demonstrate and improve the photovoltaics and photodetectors by introducing AZO nanoscaled structures.;ZnO has been widely studied for optoelectronic applications such as light emitting diodes, lasers and photodiodes covering the ultraviolet spectrum because of its wide and direct bandgap and high exciton binding energy. In this research, aluminum doped ZnO films were grown by a dual beam sputtering method which is a combination of RF sputtered ZnO and DC sputtered Al. Various approaches were applied to characterize its optical, electrical and structural modulation in terms of growth parameters and doping parameters. As an n-type dopant, Al doping was controlled from 5×016 to 5×0 20 cm-3 maintaining visible transparency with a wider transparency as Al increased, and high mobility ( 2 ∼ 14 cm2/V.s).;For the optoelectric applications, a ZnO/Si heterojunction was demonstrated and studied regarding Al doping effects on the anisotype and isotype junction. An unlikely conventional photovoltaic structure suggested the ZnO/Si solar cell to be advantageous in terms of low cost fabrication process – low temperature, no diffusion, and large area processing. In this structure, AZO plays a role as a transparent current spreading layer and rectifying junction with silicon (Si).;Furthermore, by introducing metal nanostructures inside of the AZO film, light harvesting was enhanced because of plasmonic and light scattering effects ensuring minimized electrical and optical loss within the AZO.;To improve photovoltaic performance, a transparent and conductive nanolens array was embedded on ITO film and employed on a conventional Si solar cell using large scale nanoimprint method. The proposed structure provides superior optical transparency beyond 700 nm of wavelength and omnidirectional broadband low reflectivity as well as good electrical conductivity. The nanolens array collimates the long wavelength energy into a shallow depth of Si, showing improved charge collection efficiency. Moreover, wave coupling in the nanolens uncovered region focuses the energy in a more shallow depth as an absorber.
机译:这项研究的目的是研究铝掺杂的ZnO(AZO)的光学,电学和结构特性,并通过引入AZO纳米级结构来开发新颖的方法来演示和改进光伏和光电探测器。作为发光二极管,激光器和光电二极管,由于其宽带隙和直接带隙以及高激子结合能,它们覆盖了紫外线光谱。在这项研究中,铝掺杂的ZnO薄膜是通过双束溅射方法生长的,该方法是RF溅射的ZnO和DC溅射的Al的组合。根据生长参数和掺杂参数,采用了各种方法来表征其光学,电学和结构调制。作为n型掺杂剂,将Al的掺杂量控制在5×016至5×0 20 cm-3之间,保持可见光透明性,并随着Al的增加而具有更大的透明性,并具有较高的迁移率(2〜14 cm2 / Vs)。在应用中,ZnO / Si异质结得到了证实,并研究了Al掺杂对同型和同型结的影响。不太可能的常规光伏结构表明,ZnO / Si太阳能电池在低成本制造工艺(低温,无扩散和大面积加工)方面具有优势。在这种结构中,AZO起到了透明电流扩散层和与硅(Si)的整流结的作用;此外,通过在AZO膜内部引入金属纳米结构,由于等离激元和光散射效应确保了最小化电学作用,从而增强了光收集为了提高光伏性能,将透明且导电的纳米透镜阵列嵌入ITO膜,并使用大规模纳米压印方法在常规的Si太阳能电池上使用。所提出的结构在波长超过700 nm时具有出色的光学透明性,并具有全向宽带低反射率以及良好的导电性。纳米透镜阵列将长波长能量准直到Si的浅深度,显示出提高的电荷收集效率。此外,纳米透镜未覆盖区域中的波耦合将能量集中在更浅的深度作为吸收剂。

著录项

  • 作者

    Yun, Juhyung.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering General.;Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号