首页> 外文学位 >Field and theoretical investigations of strain localization: Effects of mineralogy, shear heating and grain size evolution on deformation in the Earth.
【24h】

Field and theoretical investigations of strain localization: Effects of mineralogy, shear heating and grain size evolution on deformation in the Earth.

机译:应变局部化的现场和理论研究:矿物学,剪切加热和晶粒尺寸演变对地球变形的影响。

获取原文
获取原文并翻译 | 示例

摘要

Viscous and viscoelastic deformation strongly affects the mechanical behavior of the Earth. This style of deformation has consequences for a wide range of geodynamic processes from large scale processes like the formation and maintenance of plate boundaries, to smaller scale processes like postseismic deformation on and near faults. One of the key features of viscous and viscoelastic deformation in the Earth is that it is observed to be self localizing under some circumstances..;In Chapter 2 we examine strain localization in a natural system in which two very rheologically different materials, gabbronorite (predominantly plagioclase) and harzburgite (predominantly olivine), were juxtaposed due to volcanic intrusion and subsequently deformed. We utilized field relationships, pyroxene and amphibole/plagioclase thermometry, metamorphic phase equilibrium, grain size piezometry and electron backscatter diffraction (EBSD) in order to constrain the deformation conditions for the field area. The viscosity of gabbronorite was found to be: (1) consistent with the predicted viscosities based on the extrapolation of experimental flow laws and (2) at least two orders of magnitude lower than the harzburgite while deformation was occurring. This suggests both that a significant viscosity contrast exists at the crust-mantle boundary where the crustal lithology is dominated by plagioclase and the mantle by olivine, and wherever deformation is geometrically allowed to localize within plagioclase rich layers.;In Chapter 3 we examine the theoretical effect of shear heating as well as the feedback between viscous dissipation and temperature dependant viscosity on strain localization in a one-dimensional model of a viscoelastic shear zone. This model builds on the work of Kelemen and Hirth (2007) by utilizing a complex dry olivine viscoelastic rheology that includes dislocation creep, diffusion creep, dislocation accommodated grain boundary sliding (disGBS) and low temperature plasticity (LTP). We have found that increasing either the applied strain rate or the grain size system behavior is modified in three significant ways: (1) it causes the maximum stress the system can archive to increase, (2) it results in more unstable system behavior and (3) it causes the system to accommodate more deformation in the background. One consequence of enhanced background deformation is that system exhibits distinct periods of accelerated stress relaxation accompanied by increased strain rates, that do not necessarily go unstable. Consequently, we have shown that shear heating may play an important roll both in viscous deformation in the Earth and potentially in the occurrence of intermediate depth earthquakes and slow slip events.;In Chapter 4, we extend Chapter 3 and examine the feedbacks between grain size evolution, viscous dissipation and a complex temperature and grain size dependant viscosity in a one-dimensional model of a viscoelastic shear zone. We evaluated both the grain size evolution models of Austin and Evans (2007) and a modified version of Hall and Parmentier (2003). We find that Austin and Evans predicts unrealistically fine background grain sizes while the predictions based on Hall and Parmentier (2003) are more reasonable. We also find that, based on this model and the experimental work of Mei et al. (2010), LTP may not contribute to grain size reduction in viscously deforming materials. Based on this model grain size evolution does not appear to strongly affect the peak stress or stability of a system for fine initial grain sizes as grain size reduction does not significantly alter the initial viscosity structure. However, in systems with coarser initial grain sizes, grain size evolution does appear to contribute to system instability. Additionally, for both initially coarse and fine systems, grains size evolution results in the emergence of stress evolutions displaying two distinct episodes of stress reduction. Much like Chapter 3, our observations in Chapter 4 suggest that grain size evolution may play an important role in viscous deformation in the Earth and may potentially be a mechanism for some intermediate depth earthquakes and slow slip events. (Abstract shortened by UMI.).
机译:粘性和粘弹性变形会严重影响地球的机械行为。这种变形形式会影响广泛的地球动力学过程,从大型过程(如板块边界的形成和维持)到较小规模的过程(如断层及其附近的地震后变形)。地球中粘性和粘弹性变形的主要特征之一是在某些情况下观察到它是自定域的。.在第二章中,我们研究了在自然系统中的应变定域,在该系统中,两种流变学上非常不同的材料,辉长石(主要是辉长岩)斜长石)和哈兹石(主要为橄榄石)由于火山侵入而并列,随后变形。我们利用场关系,辉石和闪石/斜长石高温测温法,变质相平衡,粒度压强法和电子背散射衍射(EBSD)来限制场区的变形条件。辉长岩的粘度被发现为:(1)与根据实验流量定律的推算得出的预测粘度一致;(2)发生变形时,比辉石低至少两个数量级。这表明在地壳-地幔边界存在显着的粘度对比,地壳岩性主要由斜长石和地幔由橄榄石构成,并且在几何上允许变形存在于斜长石丰富的层中的任何地方。;在第三章中,我们研究了理论粘弹性剪切区的一维模型中,剪切加热以及粘性耗散和温度相关粘度之间的反馈对应变局部化的影响。该模型基于Kelemen和Hirth(2007)的工作,利用复杂的干橄榄石粘弹性流变学,包括位错蠕变,扩散蠕变,位错适应晶界滑动(disGBS)和低温可塑性(LTP)。我们发现,增加施加应变率或晶粒尺寸系统行为的方法有以下三种重要方式:(1)导致系统可以存档的最大应力增加;(2)导致系统行为更加不稳定;以及( 3)它导致系统在后台容纳更多的变形。背景变形增强的结果是,系统表现出明显的加速应力松弛期,伴随着应变率的增加,不一定会变得不稳定。因此,我们已经表明,剪切加热可能在地球的粘性变形以及潜在的中深度地震和慢滑事件的发生中起重要作用。在第4章中,我们扩展了第3章并研究了晶粒尺寸之间的反馈粘弹性剪切带的一维模型中的演化,粘性耗散以及复杂的温度和粒度依赖性粘度。我们评估了Austin和Evans(2007)的晶粒尺寸演化模型以及Hall和Parmentier(2003)的修改版。我们发现Austin和Evans预测的背景晶粒尺寸不切实际,而基于Hall和Parmentier(2003)的预测更为合理。我们还发现,基于该模型和Mei等人的实验工作。 (2010年),LTP可能不会有助于减小粘性变形材料的晶粒尺寸。基于该模型,晶粒尺寸的减小似乎不会显着改变初始粘度的结构,因此晶粒尺寸的变化似乎不会严重影响系统的峰值应力或系统稳定性,因此初始晶粒尺寸较小。但是,在具有较粗的初始晶粒尺寸的系统中,晶粒尺寸的演变确实会导致系统不稳定。另外,对于最初的粗体系和细体系,晶粒尺寸的演变都会导致应力演化的出现,从而显示出两种不同的应力降低现象。与第3章非常相似,我们在第4章中的观察表明,晶粒尺寸演化可能在地球的粘性变形中起重要作用,并且可能是某些中等深度地震和慢滑事件的机制。 (摘要由UMI缩短。)。

著录项

  • 作者

    Homburg, Janelle Marie.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Geology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号