首页> 外文学位 >Fabrication, development and characterization of micro/nano actuation based sensors and applications for gas composition analysis.
【24h】

Fabrication, development and characterization of micro/nano actuation based sensors and applications for gas composition analysis.

机译:基于微/纳米驱动的传感器的制造,开发和表征以及用于气体成分分析的应用。

获取原文
获取原文并翻译 | 示例

摘要

Micro/nano actuation based sensors for gas sensing have generated a great deal of interest due to their ability to detect minute gas concentrations. Currently, gas detection typically relies on changes in cantilever mass or surface stress when a gas interacts with the sensor. Because the detection involves a chemical reaction, the types of gases that can be detected are limited and the detection process is not repeatable and irreversible. Therefore, it is the purpose of this study to develop microresonators, using a new fabrication method, and to investigate the application of these devices as non-reaction based gas sensors.;Lateral silicon microresonators were successfully fabricated by implementing a new fabrication technique that included using electron-beam lithography to pattern an SOI wafer for iron thin-film deposition. The 5 nm iron film was then used as a masking layer for the deep reactive ion etching (DRIE) process. The microresonators were actuated using an electrostatic force and the resonance frequency was detected using a piezoresistive method. Both analytical and computational modeling; as well as experimental testing, were performed to characterize the microresonators. The dependence of the resonance frequency response on the AC bias, DC bias and damping conditions of the gas environment were studied. For the first time, the resonant frequency shifts of the resonator due to viscous damping were experimentally found to be directly related to the molar mass of the gas in a gas environment with a known pressure; thereby, providing a non-reaction based method for determining the composition of the gas environment. Specifically, the microresonators developed in this study successfully determined the CO2 concentration for different CO 2/air gas compositions. The advantages of this gas analysis method are that it is simple, repeatable, reversible and not limited to reactive gases.
机译:由于基于微/纳米致动的气体检测传感器能够检测微小的气体浓度,因此引起了人们的极大兴趣。当前,气体检测通常依赖于当气体与传感器相互作用时悬臂质量或表面应力的变化。由于检测涉及化学反应,因此可检测的气体类型受到限制,并且检测过程不可重复且不可逆。因此,本研究的目的是使用一种新的制造方法来开发微谐振器,并研究这些器件在基于非反应的气体传感器中的应用。通过采用一种新的制造技术,成功地制造了横向硅微谐振器。使用电子束光刻技术对用于铁薄膜沉积的SOI晶片进行构图。然后将5 nm铁膜用作深反应离子刻蚀(DRIE)工艺的掩膜层。使用静电力驱动微谐振器,并使用压阻法检测谐振频率。分析和计算建模;以及实验测试,以表征微谐振器。研究了共振频率响应对气体环境的交流偏置,直流偏置和阻尼条件的依赖性。首次通过实验发现,由于粘性阻尼而引起的谐振器的谐振频率变化直接与已知压力的气体环境中气体的摩尔质量有关;因此,提供了一种基于非反应的方法来确定气体环境的组成。具体而言,在这项研究中开发的微谐振器成功确定了不同CO 2 /空气成分的CO2浓度。这种气体分析方法的优点是它简单,可重复,可逆且不限​​于反应性气体。

著录项

  • 作者

    Xu, Yang.;

  • 作者单位

    University of Louisville.;

  • 授予单位 University of Louisville.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号