首页> 外文学位 >Shock-resistant low-power ferromagnetic MEMS magnetometers.
【24h】

Shock-resistant low-power ferromagnetic MEMS magnetometers.

机译:耐冲击的低功率铁磁MEMS磁力计。

获取原文
获取原文并翻译 | 示例

摘要

A ferromagnetic micromechanical magnetometers has been designed, fabricated, and tested whose sensitivity, frequency response, shock resistance, and noise floor have been determined. The need for miniature high-sensitivity low-power magnetometers is driven by applications such as wireless sensor networks, which are useful for monitoring and controlling large areas, large facilities, and large numbers of mobile assets. Existing magnetometer technologies use too much power (fluxgate), are not sensitive enough (hall-effect), or require extensive support-systems (squids).;The magnetometer presented in this dissertation is a novel MEMS-based magnetometer that is capable of a high sensitivity that does not scale down with dimension and consumes no power other than that needed for the sense circuits. The concept behind the operation of this low-power magnetometer is straight-forward: a micromechanical compass. An ambient magnetic field will produce a torque (taumag) on the magnet. The magnetic torque is then transferred to a torsional microflexure and an angular deflection (&phis;) is generated that is proportional to the magnetic torque and inversely proportional to the angular stiffness of the torsional flexure. Despite the fact that the magnetic torque scales down with a cubic dependence, so does the angular mechanical stiffness of the torsion bar. The result is that the ratio of the two, and hence the angular deflection produced by the sensed magnetic field, has no dependence on dimensional scaling.;Preliminary shock tests were performed at high-G levels (∼5,000 to 10,000 G's) to investigate the relative robustness of the various magnetometer designs. Theory and results showed that the magnetometer can be designed to be resistant to shock, and still achieve a high sensitivity.;Sensitivity and frequency-response data has been taken using both a laser Doppler vibrometer (LDV), and capacitive sensing circuitry. The LDV has shown that this magnetometer technology is capable of sensing nT magnetic fields for a frequency range of 10 to 100 Hz. Analysis of the mechanical noise limits for the magnetometer technology were found to be in the pT/Hz range for the most sensitive magnetometers, but were unobservable due to the higher noise floor in the LDV. MEMS magnetometers incorporating capacitance-sensing electrodes and off-chip sensing circuitry were capable of detecting mT magnetic fields, with the system being limited by parasitic capacitances and circuit noise ( mT/Hz range).
机译:已经设计,制造和测试了铁磁微机械磁力计,其灵敏度,频率响应,抗冲击性和本底噪声已经确定。诸如无线传感器网络之类的应用推动了对微型高灵敏度低功耗磁力计的需求,这些应用对于监视和控制大面积,大型设施和大量移动资产非常有用。现有的磁力计技术使用的功率过多(磁通门),不够灵敏(霍尔效应)或需要广泛的支持系统(鱿鱼)。本文提出的磁力计是一种新颖的基于MEMS的磁力计,能够实现高灵敏度,不会随尺寸缩小,并且除了感测电路所需的功率外不消耗任何功率。这种低功率磁力计的操作原理很简单:一个微机械罗盘。环境磁场将在磁体上产生扭矩(taumag)。然后,将磁转矩传递到扭转微挠曲,并产生与磁转矩成比例且与扭转挠曲的角刚度成反比的角挠度(φ)。尽管存在磁转矩按比例减小的事实,但扭杆的角机械刚度也是如此。结果是两者之比以及因此感应到的磁场产生的角偏转与尺寸比例无关。;在高G水平(约5,000至10,000 G's)下进行了初步的冲击试验,以研究各种磁力计设计的相对耐用性。理论和结果表明,磁力计可以设计成抗震,并且仍然可以达到很高的灵敏度。激光多普勒振动计(LDV)和电容感测电路已获得了灵敏度和频率响应数据。 LDV已表明,该磁力计技术能够感应10至100 Hz频率范围内的nT磁场。对于最灵敏的磁力计,对磁力计技术的机械噪声极限的分析被发现在pT / Hz范围内,但是由于LDV的本底噪声较高,因此无法观察到。带有电容感应电极和片外感应电路的MEMS磁力计能够检测mT磁场,而该系统受到寄生电容和电路噪声(mT / Hz范围)的限制。

著录项

  • 作者

    Yee, Jeffrey Kwok-Koon.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号