首页> 外文学位 >Protein immobilization into hollow nanostructures: Effects of concave surface on adsorbed protein structure and function.
【24h】

Protein immobilization into hollow nanostructures: Effects of concave surface on adsorbed protein structure and function.

机译:蛋白质固定到空心纳米结构中:凹面对吸附的蛋白质结构和功能的影响。

获取原文
获取原文并翻译 | 示例

摘要

The novel physical/chemical properties of nanomaterials have already endowed them with unprecedented potentials in biomedical applications, yet a biological property known as the "morphology effect" enables them with further possible abilities to tailor attached proteins. Basically, nanomaterials interact with a biological system via its surface proteins, and since proteins are usually several nanometers in size, they are able to sense different nanoscale morphologies and adjust themselves in response, resulting in conformational perturbations and functional changes. Therefore, understanding the nanostructure-protein interactions is the corner stone in bridging nanotechnology and biology. During the last decade, in-depth studies have been performed on the effect of nanoscale surface topography on adsorbed protein structure and function by developing and characterizing a variety of nanoparticle-protein conjugates. However, a fundamental understanding of nano-bio interactions at concave surfaces is limited, despite the abundance and importance of such nanostructures. Unfortunately, this lack of understanding is not only epistemological, but also methodological. As a methodological perspective, the greatest challenges are to create a concave nanostructure that allows such interactions to occur, and to distinguishingly characterize the proteins at concave surfaces. In this thesis study, we have synthesized nanocages (AuNG) and use their hollow cores as a concave protein immobilization surface. Lysozyme was used as a model to probe interactions between a protein and nanostructures. Solid Au nanoparticles with a similar morphology and surface chemistry were also used as a reference. Protein's through-pore diffusivity into and out from AuNG was the key to distinguish proteins at the concave surfaces, allowing the removal of externally bound lysozyme in high ionic strength buffer. Through a series of quantitative analyses of protein adsorption profiles, structures and enzymatic activities, a general understanding of protein behavior at concave surfaces has been established. According to our investigations on lysozyme-nanocage nanobioconjuagtes, the concave surfaces inside AuNG induced more perturbation on internally adsorbed lysozyme, but since the cages also reduced the formation of macro nano-bio aggregations, adsorbed lysozyme on them has a higher apparent activity compared with those on other gold nanoparticle conjugates previously studied. Hence, this thesis study has probed the nano-bio interactions on concave surfaces, and also established a platform on which more studies alike can be performed.
机译:纳米材料的新颖物理/化学特性已经赋予它们生物医学应用程序前所未有的潜力,然而被称为“形态效应”的生物学特性使它们具有进一步的能力来修饰附着的蛋白质。基本上,纳米材料通过其表面蛋白与生物系统相互作用,并且由于蛋白的大小通常为几纳米,因此它们能够感知不同的纳米级形态并响应自身进行调整,从而导致构象扰动和功能变化。因此,了解纳米结构-蛋白质相互作用是桥接纳米技术和生物学的基石。在过去的十年中,通过开发和表征各种纳米粒子-蛋白质结合物,对纳米级表面形貌对吸附的蛋白质结构和功能的影响进行了深入研究。然而,尽管这种纳米结构的丰富性和重要性,对凹形表面处的纳米生物相互作用的基本理解是有限的。不幸的是,这种缺乏了解不仅是认识论的,而且是方法论的。从方法学的角度来看,最大的挑战是创建允许发生此类相互作用的凹面纳米结构,并区分凹面表面的蛋白质。在本论文的研究中,我们合成了纳米笼(AuNG),并将它们的中空核心用作凹面蛋白固定表面。溶菌酶被用作探测蛋白质和纳米结构之间相互作用的模型。具有相似形态和表面化学性质的固态金纳米颗粒也被用作参考。蛋白质进入AuNG或从AuNG扩散出的通孔扩散率是区分凹面蛋白的关键,从而可以去除高离子强度缓冲液中外部结合的溶菌酶。通过对蛋白质吸附特性,结构和酶活性的一系列定量分析,已经建立了对凹面蛋白质行为的一般理解。根据我们对溶菌酶纳米生物缀合物的研究,AuNG内部的凹面对内部吸附的溶菌酶引起更多的扰动,但是由于笼子也减少了宏观纳米生物聚集体的形成,因此与它们相比,吸附的溶菌酶具有更高的表观活性。在先前研究的其他金纳米颗粒共轭物上。因此,本论文的研究探索了凹形表面上的纳米生物相互作用,并建立了可以进行更多研究的平台。

著录项

  • 作者

    Qian, Xi.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Materials science.;Molecular biology.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号