首页> 外文学位 >Controlling laminar flow in microfluidic channels and covalent chemistry of single-walled carbon nanotubes.
【24h】

Controlling laminar flow in microfluidic channels and covalent chemistry of single-walled carbon nanotubes.

机译:控制微流通道中的层流和单壁碳纳米管的共价化学。

获取原文
获取原文并翻译 | 示例

摘要

Since their discovery in 1993, single-walled carbon nanotubes (SWNTs) have been one of the most interesting nanomaterials in the past 20 years. Their outstanding electric, optical, thermal, chemical and mechanical properties have opened many new research areas, among which electronic-type based SWNT separation and surface chemical functionalization are of vital importance due to the major challenges for SWNT applications: lacking synthetic approaches for simple electronic-type products and poor dispersion in most solvents. This dissertation describes my work on quadrupole microchannel fabrication for potential dielectrophoresis-based SWNT separation and the covalent chemistry study of SWNTs.;Lab-on-a-chip device with interdigitated electrodes has been reported for SWNT separation. However, quadrupole microchannel would theoretically be more effective than planar interdigitated electrodes with respect to dielectrophoresis-based separation. The first part of this dissertation demonstrates the fabrication of quadrupole microchannel on a lab-on-a-chip device by controlling multiphase laminar flow in microfluidic channels. The n-dodecyl-beta-D-maltoside (DDM)-sheathing phases and bi-layer T-junctions are introduced for the first time to control the electroless plating of silver electrodes on the channel sidewalls three-dimensionally. The method is readily accessible, inexpensive and completely based on planar soft-lithography. The fabricated microchip has the potential applications for high-resolution dielectrophoretic SWNT separation.;The second part of this dissertation focuses on the covalent chemistry of carbon nanotubes. In this study, we discovered a general defluorination mechanism for fluorinated single-walled carbon nanotubes (FSWNTs) in the presence of a wide range of electron donors at room temperature. Depending on the electron donating ability of the donor molecules, spontaneous or photo-induced charge transfer occurs from the electron donors to FSWNTs, which is then followed by the elimination of F- ions. The same mechanism is also applicable when FSWNT obtains electrons electrochemically. Both chemical reaction condition and irreversible electrochemical reduction potential data indicate that the defluorination reactivity of C-F bonds in FSWNT is stronger than those in unstrained compounds but weaker than those in highly strained fullerene derivatives. The reactivity of the electron transfer assisted defluorination originates from not only the strong electron affinity of FSWNTs, but also the strained bonding configuration caused by molecular curvature as it is predicted by related theoretical studies. Cylindrically shaped SWNTs provide a middle point between undistorted molecules and spherical fullerenes in tuning chemical reactivities using molecular curvature effects.;Electron-transfer assisted defluorination of FSWNTs generates reactive carbon radicals on carbon nanotubes. Raman spectra, X-ray photoelectron spectroscopy, transmission electron microscopy and the strengthened mechanical property of defluorinated FSWNT foams indicate that the products are cross-linked SWNTs directly bonding through sp3 C-C bond between adjacent nanotubes. The cross-linked SWNT networks show sensitive Raman response to different laser powers. An intense laser decomposes the cross-linked SWNT networks, making the cross-linked SWNT networks possible to find applications as light, strong and degradable materials.;Besides the chemistry of carbon nanotubes, the covalent chemistry of several other carbon nanostructures including the C60 fullerene, carbon nanobuds (C60- SWNT) and fullerene/nanotube mixtures (C 60/SWNT) is also studied by UV-vis-NIR absorption and NIR fluorescence. Carbon nanobuds synthesized in an aerosol reactor by our collaborators lose the characteristic absorption and fluorescence emission that belongs to SWNTs, indicating that the electronic structure of the tubes in the carbon nanobuds is destroyed. In an attempt to synthesize nanobuds from C60/SWNT mixtures in solution phase through UV-irradiation, it is found that although C60 polymerizes though [2+2] cycloaddition, similar reaction does not occur between C60 and the outer surface of SWNTs, which can be attributed to the lower reactivity of SWNTs due to their reduced surface curvature. The presence of SWNTs in C60 solution slows down the photopolymerization of fullerenes. A quenching effect of SWNTs towards excited C60 probably exists.
机译:自从1993年发现单壁碳纳米管(SWNT)以来,过去20年来一直是最有趣的纳米材料之一。它们出色的电,光,热,化学和机械性能打开了许多新的研究领域,其中基于电子类型的SWNT分离和表面化学功能化由于SWNT应用面临的主要挑战而至关重要:缺乏简单电子的合成方法型产品,在大多数溶剂中的分散性较差。这篇论文描述了我在基于潜在的介电泳的单壁碳纳米管分离的四极微通道制造以及单壁碳纳米管的共价化学研究方面的工作。已经报道了带有叉指电极的芯片实验室设备用于单壁碳纳米管分离。然而,就基于介电电泳的分离而言,四极微通道理论上比平面叉指电极更有效。本文的第一部分通过控制微流体通道中的多相层流演示了在芯片实验室设备上四极微通道的制造。首次引入正十二烷基-β-D-麦芽糖苷(DDM)的护套相和双层T型结,以三维方式控制通道侧壁上银电极的化学镀。该方法容易获得,便宜并且完全基于平面软光刻。制备的微芯片具有高分辨率的介电SWNT分离的潜在应用。本论文的第二部分着眼于碳纳米管的共价化学。在这项研究中,我们发现了在室温下存在大量电子供体的情况下,氟化单壁碳纳米管(FSWNT)的一般脱氟机理。根据给体分子的电子给体能力,自电子或光诱导的电荷从电子给体向FSWNT转移,然后消除F-离子。当FSWNT电化学获得电子时,同样的机制也适用。化学反应条件和不可逆的电化学还原电势数据均表明,FSWNT中C-F键的脱氟反应性强于未应变化合物中的C-F键,但弱于高应变富勒烯衍生物中的C-F键。电子转移辅助脱氟的反应性不仅源于FSWNT的强电子亲和力,还源于相关理论研究所预测的由分子曲率引起的应变键合构型。圆柱形SWNTs通过分子曲率效应在化学反应性调节中提供了未畸变分子与球形富勒烯之间的中间点。FSWNTs的电子转移辅助脱氟在碳纳米管上产生了活性碳自由基。拉曼光谱,X射线光电子能谱,透射电子显微镜以及脱氟FSWNT泡沫的增强的机械性能表明,该产品是通过相邻纳米管之间的sp3 C-C键直接键合的交联SWNT。交联的SWNT网络显示出对不同激光功率的敏感拉曼响应。强烈的激光分解了交联的SWNT网络,使该交联的SWNT网络有可能作为轻质,坚固和可降解的材料找到应用。;除了碳纳米管的化学作用外,包括C60富勒烯在内的其他几种碳纳米结构的共价化学作用碳纳米芽(C60-SWNT)和富勒烯/纳米管混合物(C 60 / SWNT)也通过UV-vis-NIR吸收和NIR荧光进行了研究。我们的合作者在气溶胶反应器中合成的碳纳米芽失去了属于单壁碳纳米管的特征吸收和荧光发射,这表明碳纳米芽中的电子管结构被破坏了。在尝试通过UV辐射从溶液相中的C60 / SWNT混合物合成纳米芽的过程中,发现尽管C60通过[2 + 2]环加成反应聚合,但在C60和SWNT的外表面之间不会发生类似的反应,这可以归因于SWNT的降低的表面曲率,其较低的反应性。 C60溶液中SWNT的存在减慢了富勒烯的光聚合。可能存在SWNT对激发的C60的猝灭作用。

著录项

  • 作者

    Gao, Yunxiang.;

  • 作者单位

    Ohio University.;

  • 授予单位 Ohio University.;
  • 学科 Chemistry Physical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号