首页> 外文学位 >Structure-function relationship studies of the UDP-glucose pyrophosphorylase from Escherichia coli.
【24h】

Structure-function relationship studies of the UDP-glucose pyrophosphorylase from Escherichia coli.

机译:大肠杆菌UDP-葡萄糖焦磷酸化酶的结构-功能关系研究。

获取原文
获取原文并翻译 | 示例

摘要

UDP-Glucose Pyrophosphorylase (UDP-Glc PPase) is a key enzyme of the carbohydrate metabolic pathway widely used among prokaryotes and eukaryotes. In plants, UDP-Glc PPase is necessary for sucrose synthesis while mammals utilize this enzyme for the production of glycogen. A bacterium such as Escherichia coli uses UDP-Glc PPase for biosynthesis of the lipopolysscharide core which forms a cell wall.;This study focused on UDP-Glc PPase from Escherichia coli which is encoded by both galU and galF genes. The first part of this project investigated amino acids that could play an important role in the function of UDP Glc PPase (GalU). Based on the UDP-Glucose Pyrophosphorylase (GalU) model with Corynebacterium glutamicum's UDP-Glucose and magnesium ion, we hypothesized that Glutamic acid- 201, Glutamine-109, Lysine- 202, Arginine-21, Lysine-31, and Aspartic acid 265 are residues that play a critical role in UDP-Glc PPase (GalU) either in catalysis or binding of substrates.;The second part of this project focused on finding whether UDP-Glc PPase from the galF gene is catalytic or not. Also, the alignment of eukaryotic galU and galF amino acid sequences showed that Threonine-20 and Arginine-21 side chains are missing in GalF. Therefore, we hypothesized that by mutating these two residues in the galF gene, GalF activity will be resurrected (if wild type is inactive) or mutations will increase the enzyme's activity (if wild type is active).;The catalytic characterization of GalU revealed a decrease in UDP-Glucose Pyrophosphorylase activity of all mutants. Out of all mutated residues, Arginine-21 was the most critical catalytic amino acid since the mutation showed the highest drop in activity compared to wild type. Glutamine-109 was important for the binding with Uracil, demonstrating its specificity for this type of enzyme. Lysine-202 and Glutamic Acid-201 had recognition for the sugar, UDP-glucose, but they are not important for the enzyme's specificity. Aspartic Acid-201 indirectly participated in the pyrophosphate binding.;Magnesium ions were critical for UDP-Glc PPase's activity. Furthermore, approximately 2 mM was the minimal concentration of magnesium necessary for the enzyme's maximum activity. It has been reported that the galF gene does not encode an active UDP-Glc PPase, however, our study revealed that GalF is an active enzyme. Yet, the protein's specific activity was 100-fold lower compared to GalU. This result suggests that the ancestry of GalF is a catalytic subunit and that it became reduced in activity as it evolved.;The saturation curve revealed that GalF needs magnesium ions in order to be active. The comparison of binding affinities between GalF and GalU showed that GalF requires a higher concentration of magnesium in order for its maximal activity to be detected. The two mutations performed on the galF gene did not affect GalF's activity and they did not have an effect on the binding affinity of UDP-Glc or PPi.
机译:UDP-葡萄糖焦磷酸化酶(UDP-Glc PPase)是在原核生物和真核生物中广泛使用的碳水化合物代谢途径的关键酶。在植物中,UDP-Glc PPase是蔗糖合成所必需的,而哺乳动物则利用该酶产生糖原。诸如大肠杆菌之类的细菌利用UDP-Glc PPase来生物合成形成细胞壁的脂多糖核心;该研究的重点是大肠杆菌的UDP-Glc PPase,它由galU和galF基因编码。该项目的第一部分研究了可能在UDP Glc PPase(GalU)功能中发挥重要作用的氨基酸。基于谷氨酸棒杆菌的UDP-葡萄糖和镁离子的UDP-葡萄糖焦磷酸化酶(GalU)模型,我们假设谷氨酸201-,谷氨酰胺-109,赖氨酸-202,精氨酸-21,赖氨酸-31和天冬氨酸265为在底物的催化或结合中在UDP-Glc PPase(GalU)中起关键作用的残基;该项目的第二部分着眼于从galF基因中发现UDP-Glc PPase是否具有催化作用。同样,真核galU和galF氨基酸序列的比对表明,GalF中缺少苏氨酸-20和精氨酸-21侧链。因此,我们假设通过突变galF基因中的这两个残基,GalF活性将被复活(如果野生型是无活性的)或突变将增加酶的活性(如果野生型是有活性的)。降低所有突变体的UDP-葡萄糖焦磷酸化酶活性。在所有突变残基中,精氨酸21是最关键的催化氨基酸,因为与野生型相比,该突变显示出最高的活性下降。谷氨酰胺-109对于与尿嘧啶的结合很重要,证明了其对这种酶的特异性。赖氨酸202和谷氨酸201可识别糖,UDP-葡萄糖,但它们对酶的特异性并不重要。天冬氨酸201间接参与了焦磷酸盐的结合。镁离子对UDP-Glc PPase的活性至关重要。此外,大约2 mM是酶最大活性所需的最小镁浓度。据报道,galF基因不编码活性UDP-Glc PPase,但是,我们的研究表明GalF是一种活性酶。但是,该蛋白质的比活性比GalU低100倍。该结果表明GalF的祖先是催化亚基,并且随着其进化其活性降低。饱和曲线表明GalF需要镁离子才能被激活。 GalF和GalU之间的结合亲和力比较表明,GalF需要更高浓度的镁才能检测到最大活性。对galF基因进行的两个突变不影响GalF的活性,并且对UDP-Glc或PPi的结合亲和力没有影响。

著录项

  • 作者

    Orlof, Agnieszka M.;

  • 作者单位

    Loyola University Chicago.;

  • 授予单位 Loyola University Chicago.;
  • 学科 Chemistry Biochemistry.
  • 学位 M.S.
  • 年度 2010
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号