首页> 外文学位 >CUPOLETS: Chaotic unstable periodic orbits theory and applications.
【24h】

CUPOLETS: Chaotic unstable periodic orbits theory and applications.

机译:核心:混沌不稳定周期轨道的理论和应用。

获取原文
获取原文并翻译 | 示例

摘要

Recent theoretical work suggests that periodic orbits of chaotic systems are a rich source of qualitative information about the dynamical system. The presence of unstable periodic orbits located densely on the attractor is a typical characteristic of chaotic systems. This abundance of unstable periodic orbits can be utilized in a wide variety of theoretical and practical applications [19]. In particular, chaotic communication techniques and methods of controlling chaos depend on this property of chaotic attractors [12, 13].; In the first part of this thesis, a control scheme for stabilizing the unstable periodic orbits of chaotic systems is presented and the properties of these orbits are investigated. The technique allows for creation of thousands of periodic orbits. These approximated chaotic unstable periodic orbits are called cupolets (C&barbelow;haotic U&barbelow;nstable P&barbelow;eriodic O&barbelow;rbit- lets). We show that these orbits can be passed through a phase transformation to a compact cupolet state that possesses a wavelet-like structure and can be used to construct adaptive bases. The cupolet transformation can be regarded as an alternative to Fourier and wavelet transformations. In fact, this new framework provides a continuum between Fourier and wavelet transformations and can be used in variety of applications such as data and music compression, as well as image and video processing.; The key point in this method is that all of these different dynamical behaviors are easily accessible via small controls. This technique is implemented in order to produce cupolets which are essentially approximate periodic orbits of the chaotic system. The orbits are produced with small perturbations which in turn suggests that these orbits might not be very far away from true periodic orbits. The controls can be considered as external numerical errors that happen at some points along the computer generated orbits. This raises the question of shadowability of these orbits. It is very interesting to know if there exists a true orbit of the system with a slightly different initial condition that stays close to the computer generated orbit. This true orbit, if it exists, is called a shadow and the computer generated orbit is then said to be shadowable by a true orbit.; We will present two general purpose shadowing theorems for periodic and nonperiodic orbits of ordinary differential equations. The theorems provide a way to establish the existence of true periodic and non-periodic orbits near the approximated ones. Both theorems are suitable for computations and the shadowing distances, i.e., the distance between the true orbits and approximated orbits are given by quantities computable form the vector field of the differential equation.
机译:最近的理论工作表明,混沌系统的周期性轨道是有关动力系统的定性信息的丰富来源。密集存在于吸引子上的不稳定周期轨道的存在是混沌系统的典型特征。大量不稳定的周期性轨道可用于各种理论和实际应用中[19]。特别是,混沌通信技术和控制混沌的方法取决于混沌吸引子的这种特性[12,13]。在本文的第一部分,提出了一种稳定混沌系统不稳定周期轨道的控制方案,并研究了这些轨道的性质。该技术允许创建数千个周期性轨道。这些近似的混沌不稳定周期轨道被称为小圆心(Cotbar)(混沌U形,ns稳定P形,周期性O形)。我们表明,这些轨道可以通过相变传递到具有小波状结构的紧凑型丘比特状态,并且可以用于构建自适应基。 cupolet变换可以看作是Fourier和小波变换的替代方法。实际上,这种新框架在傅立叶变换和小波变换之间提供了一个连续体,可用于各种应用程序,例如数据和音乐压缩以及图像和视频处理。这种方法的关键是,所有这些不同的动力学行为都可以通过小型控件轻松访问。实施该技术以产生小杯,该小杯本质上是混沌系统的近似周期性轨道。这些轨道产生的扰动很小,这反过来表明这些轨道可能与真正的周期性轨道相距不远。控件可以看作是在计算机生成的轨道上某些点发生的外部数字错误。这就提出了这些轨道的可遮盖性的问题。知道系统是否存在真正的轨道且初始条件与计算机生成的轨道相差不大是非常有趣的。如果存在,这个真实的轨道被称为阴影,而计算机生成的轨道则被真实轨道遮盖。我们将为常微分方程的周期和非周期轨道提供两个通用的阴影定理。定理提供了一种在近似轨道附近建立真实周期性和非周期性轨道的方法。这两个定理都适合于计算,并且阴影距离,即真实轨道和近似轨道之间的距离由可从微分方程的矢量场计算的量给出。

著录项

  • 作者

    Zarringhalam, Kourosh.;

  • 作者单位

    University of New Hampshire.;

  • 授予单位 University of New Hampshire.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号