首页> 外文学位 >Electro-optical generation of patterned electron and nuclear spins in ferromagnet-semiconductor hybrids.
【24h】

Electro-optical generation of patterned electron and nuclear spins in ferromagnet-semiconductor hybrids.

机译:铁磁-半导体杂化体中带图案的电子和核自旋的电光产生。

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor electronics has thus far been dominated by the manipulation of electronic charge. For most devices it has not been necessary to consider the spin, the inherent quantum-mechanical angular momentum, of the charge carriers. On the other hand the rapid development and implementation of metallic spin-valves, which are inherently spin-dependent devices, has enabled enormous increases in the storage density of magnetic hard-drives, thus becoming a key technological component of modern computers. The goal of the field of semiconductor spintronics is to control and use the spin degree-of-freedom of quantum-mechanical entities in semiconductors to enable new types of devices, while retaining the exquisite control of the electrical and optical properties afforded by several decades of development in the semiconductor industry.; There are at least five general ingredients for spintronics technology including the ability to create, manipulate, move, store, and detect spin polarization. In this work we present new methods potentially useful in the first three aspects, using structures made from a material system composed of epitaxial ferromagnetic metals grown on GaAs via molecular beam epitaxy. The first series of experiments details how one can generate both nuclear and electron spin polarization in the GaAs either optically, electro-optically, or purely electrically. The ability to generate large nuclear spin polarization (approaching 20%) in modest applied magnetic fields enables the possibility of both storing information (in the state of the nuclear spin-system) and manipulating electron spins due to the hyperfine coupling between electron and nuclear spins, albeit at relatively low temperature. These experiments culminate in a new way to generate electron spin polarization all-electrically with the application of a few volts that should in principle work at temperatures greater than room temperature.; The second series of experiments shows how one can pattern arbitrary lateral nuclear spin polarization profiles either optically or by lithographic patterning. This enables the creation of large gradients in the nuclear spin polarization. Again, through the hyperfine coupling, these polarizations and polarization gradients manifest as large effective magnetic fields and field gradients which act upon electron spins. The ability to control the placement and shape of these effective fields and gradients therefore yields a tool that may be useful in spintronics devices based on nuclear spin.
机译:迄今为止,半导体电子学一直以操纵电荷为主。对于大多数设备,没有必要考虑电荷载流子的自旋,固有的量子力学角动量。另一方面,金属自旋阀的快速发展和实施,本质上是自旋相关的设备,已使磁性硬盘驱动器的存储密度大大提高,从而成为现代计算机的关键技术组件。半导体自旋电子学领域的目标是控制和使用半导体中量子力学实体的自旋自由度,以实现新型器件,同时保留对数十年来的电学和光学特性的精确控制。半导体产业的发展。自旋电子学技术至少有五种常规要素,包括创建,操纵,移动,存储和检测自旋极化的能力。在这项工作中,我们提出了在前三个方面可能有用的新方法,使用的结构是由通过分子束外延在GaAs上生长的外延铁磁金属组成的材料系统制成的。第一系列实验详细说明了如何在光学,电光或纯电方式下在GaAs中产生核自旋极化和电子自旋极化。由于在电子和核自旋之间存在超精细耦合,因此在适度施加的磁场中能够产生大的核自旋极化(接近20%)的能力使得既可以存储信息(处于核自旋系统状态)又可以操纵电子自旋。 ,尽管温度相对较低。这些实验以一种新的方式达到顶峰,通过施加几伏特的电压就可以全电子地产生电子自旋极化,原则上应该在高于室温的温度下工作。第二系列实验显示了如何通过光学方式或光刻方式对任意横向核自旋极化轮廓进行图案化。这使得能够在核自旋极化中创建大梯度。同样,通过超精细耦合,这些极化和极化梯度表现为作用于电子自旋的大有效磁场和电场梯度。因此,控制这些有效场和梯度的位置和形状的能力产生了一种可用于基于核自旋的自旋电子学设备的工具。

著录项

  • 作者

    Stephens, Jason M.;

  • 作者单位

    University of California, Santa Barbara.$bMaterials.;

  • 授予单位 University of California, Santa Barbara.$bMaterials.;
  • 学科 Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号