首页> 外文学位 >Integrated System Technologies for Modular Trapped Ion Quantum Information Processing.
【24h】

Integrated System Technologies for Modular Trapped Ion Quantum Information Processing.

机译:模块化阱离子离子信息处理的集成系统技术。

获取原文
获取原文并翻译 | 示例

摘要

Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (< 3e-4), and switching speeds comparable to typical single qubit gate times (< 2 mus). In a separate experiment, photons scattered from the 171Yb+ ion are coupled into an optical fiber with 63% efficiency using a high numerical aperture lens (0.6 NA). The coupled photons are directed to superconducting nanowire single photon detectors (SNSPD), which provide a higher detector efficiency (69%) compared to traditional photomultiplier tubes (35%). The total system photon collection efficiency is increased from 2.2% to 3.4%, which allows for fast state detection of the qubit. For a detection beam intensity of 11 mW/cm 2, the average detection time is 23.7 mus with 99.885(7)% detection fidelity. The technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.
机译:尽管捕获离子技术非常适合量子信息科学,但系统的可扩展性仍然是主要挑战之一。与缩放离子阱量子计算机相关的挑战之一是单独操纵不断增加的量子位数量的能力。使用通过微机电系统(MEMS)技术制造的微镜,激光束聚焦在线性链中的单个离子上,并在二维方向上控制焦点。在捕获的171Yb +量子位上演示了多个单量子位门,并使用量子态层析成像技术表征了门性能。该系统与相邻离子的串扰可忽略不计(<3e-4),并且开关速度可与典型的单量子位门控时间(<2 mus)相比。在另一个实验中,使用高数值孔径透镜(0.6 NA)将从171Yb +离子散射的光子耦合到光纤中,效率为63%。耦合的光子直接指向超导纳米线单光子探测器(SNSPD),与传统的光电倍增管(35%)相比,该探测器提供更高的探测器效率(69%)。整个系统的光子收集效率从2.2%提高到3.4%,可以快速检测量子位。对于11 mW / cm 2的检测光束强度,平均检测时间为23.7 mus,检测保真度为99.885(7)%。本论文中演示的技术可以集成为一个具有所有必要资源的单个量子寄存器,以执行本地门控以及高保真度读取并为其他系统提供光子链接。

著录项

  • 作者

    Crain, Stephen G.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Electrical engineering.;Optics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号