首页> 外文学位 >A neuromusculoskeletal tracking method for estimating muscle forces in human gait from experimental movement data
【24h】

A neuromusculoskeletal tracking method for estimating muscle forces in human gait from experimental movement data

机译:一种神经肌肉骨骼跟踪方法,可根据实验运动数据估算步态中的肌肉力量

获取原文
获取原文并翻译 | 示例

摘要

The research results contained in this dissertation relate to a novel approach to estimating individual muscle forces in human movement by exploiting typical experimental observations acquired in movement laboratories. A neuromusculoskeletal model is made to move as observed and exert the same forces on the environment as recorded in the laboratory. Electrical activity of muscles can also be used to guide the solution process such that in the end, the muscle activity of the model is in better agreement with these recordings while still producing the desired movement.;The innovation of this process is the efficient combination of inverse and forward analysis techniques. These classical techniques combined with nonlinear control theory form the basis of a neuromusculoskeletal tracking methodology for systematically replicating human performance in a computer model. The purpose is to capitalize on the non-invasive nature of this methodology to extract internal information about muscle forces and subsequent bone and soft-tissue loads during human movement. This information is sought by orthopedic surgeons and movement scientists alike in order to determine the function of individual muscles and to understand what interventions/treatments may be the most effective at restoring function and comfort to their patients.;This treatise has accomplished three primary objectives: (1) it provides the detailed development of a non-invasive method for estimating muscle forces that includes complete system dynamics and is computationally tractable; (2) performs a benchmark analysis to validate the increased accuracy and computational advantages of the tracking approach, and (3) applies neuromusculoskeletal tracking to one of the most challenging problems in biomechanics, which is human gait simulation and analysis.;In reaching these objectives four principle findings were made. (1) Tracking has provided results that are superior to previous dynamic optimization methods and at 3 to 4 orders of magnitude savings in computational costs, with the relative savings increasing with model complexity. (2) When random and systematic error/noise is present in kinematic data (due to skin movement, sampling, environmental interference, and data processing techniques), then ground reaction forces are better predictors of the true movement of the system. Under these circumstances, closely tracking experimentally estimated model kinematics is insufficient to demonstrate movement accuracy and ground reaction forces must be closely duplicated to indicate accuracy. (3) Because of its relative speed, neuromusculoskeletal tracking has proven to be a powerful validation tool since poor results or even tracking failure occurs if the model is not adequately representative of the subject data. Therefore, models must be evolved until the desired accuracy is obtained. (4) Controller weightings can further improve simulation accuracy by tracking certain reference data (such as ground reaction forces) more closely than others (i.e. motion of the toes). However, obtaining the set of weightings that balance tracking accuracy across multiple references is not a trivial task especially when there are a large number of reference signals to consider. Although improvements in tracking accuracy can be obtained by the optimization of weightings, they may not justify the high computational cost.
机译:本文所涉及的研究结果涉及一种通过利用运动实验室获得的典型实验观测值来估计人类运动中单个肌肉力量的新颖方法。制作了一个神经肌肉骨骼模型,使其如观察到的那样运动,并对环境施加与实验室记录的力相同的力。肌肉的电活动也可以用于指导求解过程,从而最终使模型的肌肉活动与这些记录更好地保持一致,同时仍产生所需的运动。逆向和正向分析技术。这些经典技术与非线性控制理论的结合构成了神经肌肉骨骼跟踪方法的基础,该方法可在计算机模型中系统地复制人类的表现。目的是利用这种方法的非侵入性性质,以提取有关人体运动期间肌肉力量以及随后的骨骼和软组织负荷的内部信息。整形外科医生和运动科学家都希望获得此信息,以便确定单个肌肉的功能并了解哪种干预/疗法可能最有效地恢复患者的功能和舒适度。该论文已实现了三个主要目标: (1)提供了一种估计肌肉力量的非侵入性方法的详细方法,该方法包括完整的系统动力学并且在计算上易于处理; (2)执行基准分析以验证跟踪方法提高的准确性和计算优势,并且(3)将神经肌肉骨骼跟踪应用于生物力学中最具挑战性的问题之一,即人体步态模拟和分析。得出了四个主要结论。 (1)跟踪提供的结果优于以前的动态优化方法,并且在计算成本上节省了3到4个数量级,而相对节省则随着模型复杂性的增加而增加。 (2)当运动学数据中存在随机和系统的误差/噪声时(由于皮肤运动,采样,环境干扰和数据处理技术),则地面反作用力可以更好地预测系统的真实运动。在这种情况下,紧密跟踪实验估计的模型运动学不足以证明运动精度,并且必须紧密复制地面反作用力以表明精度。 (3)由于其相对速度,神经肌肉骨骼跟踪已被证明是一种强大的验证工具,因为如果模型不能充分代表受试者数据,则结果较差甚至出现跟踪失败。因此,必须发展模型直到获得所需的精度。 (4)控制器权重可以通过比其他参考数据(即脚趾的运动)更紧密地跟踪某些参考数据(例如地面反作用力)来进一步提高仿真精度。然而,获得在多个参考之间平衡跟踪精度的加权集并不是一件容易的事,尤其是在要考虑大量参考信号的情况下。尽管可以通过优化权重来提高跟踪精度,但它们可能无法证明较高的计算成本。

著录项

  • 作者

    Seth, Ajay.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Biomedical engineering.;Biophysics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号