首页> 外文学位 >Phase stability of iron -carbon nanocarbides and implications for the growth of carbon nanotubes.
【24h】

Phase stability of iron -carbon nanocarbides and implications for the growth of carbon nanotubes.

机译:铁-碳纳米碳化物的相稳定性及其对碳纳米管生长的影响。

获取原文
获取原文并翻译 | 示例

摘要

Catalyst nanoparticles play a crucial role in the synthesis of single-walled carbon nanotubes by chemical vapor deposition technique. Understanding the thermal behavior of the nano-catalysts, their interaction with Carbon and stability of nanocarbides can give better insight into the growth mechanism and control over selective, yield of nanotubes. In this work, we present results using first-principle calculations and classical molecular dynamics simulations to understand the thermodynamics of free and Al2O3 supported Fe-C nanoparticles. We observe that the substrate plays an important role during the growth reaction by increasing the melting temperatures of small and medium size Fe nanoparticles. We investigate Fe-C phase diagrams for small Fe nanoparticles (d∼2nm) and discover that as the size of the Fe nanoparticle is reduced, the eutectic point shifted significantly toward lower temperatures, as expected from the Gibbs-Thomson law, and also toward lower concentrations of C. We devise a simple model based on the Young-Laplace pressure-radius relation, to predict the behavior of the phases competing for stability in Fe-C nanoclusters at low temperature. We identify ranges of nanoparticle sizes which are compatible for steady state-, limited- and no-growth of SWCNTs corresponding to unaffected, reduced and no solubility of C in the Fe nanoparticles. We also calculate Fe-Mo-C ternary phase diagrams to investigate the behavior of bimetallic Fe:Mo catalyst nanoparticles. Our results show that addition of Mo (upto small concentrations) lowers the minimum radius when stable carbides nucleate and poison the catalyst, which enables a larger range of catalyst nanoparticles sizes to nucleate nanotubes. We also find that pure Fe has the highest surface concentration in Fe:Mo nanoparticles and is likely to be the active nucleation site for nanotubes.
机译:催化剂纳米颗粒在通过化学气相沉积技术合成单壁碳纳米管中起着至关重要的作用。了解纳米催化剂的热行为,它们与碳的相互作用以及纳米碳化物的稳定性可以更好地了解生长机理以及对纳米管选择性收率的控制。在这项工作中,我们使用第一性原理计算和经典分子动力学模拟来介绍结果,以了解游离和Al2O3负载的Fe-C纳米粒子的热力学。我们观察到,通过提高中小型铁纳米颗粒的熔化温度,基材在生长反应中起着重要作用。我们研究了小的Fe纳米颗粒(d〜2nm)的Fe-C相图,发现随着Fe纳米颗粒尺寸的减小,共晶点显着移向较低的温度,这是吉布斯-汤姆森定律所预期的较低的C浓度。我们设计了一个基于Young-Laplace压力-半径关系的简单模型,以预测相在低温下竞争Fe-C纳米团簇稳定性的相的行为。我们确定了纳米颗粒尺寸的范围,这些尺寸与稳态,有限和无生长的SWCNT兼容,对应于碳在Fe纳米颗粒中的未受影响,未还原和无溶解度。我们还计算了Fe-Mo-C三元相图,以研究双金属Fe:Mo催化剂纳米粒子的行为。我们的结果表明,当稳定的碳化物成核并毒化催化剂时,添加Mo(浓度低)会降低最小半径,从而使更大范围的催化剂纳米颗粒成核纳米管。我们还发现,纯铁在Fe:Mo纳米颗粒中具有最高的表面浓度,并且可能是纳米管的活性成核位点。

著录项

  • 作者

    Awasthi, Neha.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Materials science.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号