首页> 外文学位 >Enzyme electrocatalysis in mediated bioelectrodes.
【24h】

Enzyme electrocatalysis in mediated bioelectrodes.

机译:介导生物电极中的酶电催化。

获取原文
获取原文并翻译 | 示例

摘要

Enzymatic biofuel cells utilize the unique activity and selectivity of enzymes to convert chemical energy directly to electrical energy, and have the potential to be miniaturized for small-scale power devices. This research program seeks to study the characteristics, limitations, and potential for improvement of a mediated laccase-catalyzed electrode for the reduction of oxygen, focusing on the role of mediator redox potential in the catalytic mechanism. The bio-cathode system studied utilizes purified laccase from Trametes versicolor mediated by osmium (Os) centered redox polymers. The results of these studies can enable design of mediated electrodes for biofuel cell applications.;Exposure of fuel cell cathodes to fuels like methanol can reduce fuel efficiency and cell voltage via competitive reactions, and can foul the cathode catalyst. Introduction of selective electrocatalysts such as enzymes can solve these problems, and introduces the possibility of a mixed-feed fuel cell system with reduced complexity. The effect of redox potential of a redox hydrogel mediator on the performance of the mediated bio-cathode under varying alcohol concentrations is described. This study demonstrates that the selectivity of mediated laccase oxygen cathodes can facilitate high methanol feed concentration as compared to conventional direct methanol fuel cells and under certain optimum operating conditions, the enzyme might serve as a better cathode catalyst in presence of contaminants like methanol than the conventional Pt/Ru catalysts. A non-competitive inhibition model is proposed to describe the influence of methanol on laccase-catalyzed oxygen reduction kinetics. Methanol replaces water in the enzyme and thereby affects the electron transfer environment near the enzyme active site.;In collaboration with Northeastern University, we employ X-ray absorption techniques to characterize the oxygen reduction mechanism of an immobilized laccase while the electrode is operated in situ. The overall goal of this project is to map the oxygen reduction reaction mechanism by a mediated laccase electrode as a function of mediator redox potential, applied electrode potential and presence/absence of substrate (O2). We have successfully detected active Cu sites (in micro-molar concentration) and identified key relationships between oxidation state and mediator redox potential in the presence and absence of oxygen. Our collaborators at Northeastern University have applied the powerful Delta&mgr; technique to determine the exact configuration of oxygen attachment to the Cu active sites and to identify the intermediates of the oxygen reduction reaction for a mediated biocathode.;Electron-conducting redox hydrogels electrically connect the redox centers of enzymes to electrodes, enabling multi-layer activation and higher current density output. The physicochemical state of these redox polymers and their electron transport mechanism depends on the swelling behavior of these hydrogels in an ionic media. We have fabricated and characterized homogeneous sub-micron sized thin redox hydrogel films with great precision and great repeatability. We have estimated the transport and kinetic parameters for mediated enzymatic systems with precision to have a better understanding of the reaction mechanisms in these complex systems.
机译:酶促生物燃料电池利用酶的独特活性和选择性将化学能直接转化为电能,并具有将其小型化的潜力,可用于小型功率设备。该研究计划旨在研究介导的漆酶催化的电极用于氧还原的特性,局限性和改进潜力,重点是介体氧化还原电势在催化机理中的作用。所研究的生物阴极系统利用以Tra(Os)为中心的氧化还原聚合物介导的纯色Trametes versicolor漆酶。这些研究的结果可以使设计用于生物燃料电池应用的介导电极。燃料电池阴极暴露于甲醇等燃料会通过竞争性反应降低燃料效率和电池电压,并可能污染阴极催化剂。引入选择性电催化剂(例如酶)可以解决这些问题,并可以降低混合饲料燃料电池系统的复杂性。描述了在不同的酒精浓度下,氧化还原水凝胶介体的氧化还原电势对介导的生物阴极性能的影响。这项研究表明,与常规直接甲醇燃料电池相比,介导的漆酶氧阴极的选择性可以促进高甲醇进料浓度,并且在某些最佳操作条件下,该酶在存在污染物(如甲醇)的情况下可以比常规甲醇作为更好的阴极催化剂铂/钌催化剂。提出了一个非竞争性抑制模型来描述甲醇对漆酶催化的氧还原动力学的影响。甲醇代替酶中的水,从而影响酶活性部位附近的电子转移环境。;与东北大学合作,我们采用X射线吸收技术来表征固定的漆酶在原位操作电极时的氧还原机理。该项目的总体目标是将介导的漆酶电极的氧还原反应机理映射为介体氧化还原电势,施加的电极电势以及是否存在底物(O2)的函数。我们已经成功地检测到了活性铜位点(以微摩尔浓度计),并确定了在有氧和无氧条件下氧化态与介体氧化还原电位之间的关键关系。我们东北大学的合作者已经应用了功能强大的Delta&mgr;确定氧与Cu活性位点连接的确切构型并确定介导的生物阴极的氧还原反应的中间体的技术;导电氧化还原水凝胶将酶的氧化还原中心电连接到电极上,从而实现多层活化和更高的电流密度输出。这些氧化还原聚合物的物理化学状态及其电子传输机理取决于这些水凝胶在离子介质中的溶胀行为。我们已经制造并表征了均一的亚微米级氧化还原水凝胶薄膜,具有很高的精度和可重复性。我们已经精确估计了介导酶系统的运输和动力学参数,以更好地了解这些复杂系统中的反应机理。

著录项

  • 作者

    Chakraborty, Deboleena.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 257 p.
  • 总页数 257
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号