首页> 外文学位 >Role of heterogeneity in the chemical and mechanical shock-response of nickel and aluminum powder mixtures.
【24h】

Role of heterogeneity in the chemical and mechanical shock-response of nickel and aluminum powder mixtures.

机译:异质性在镍和铝粉混合物的化学和机械冲击响应中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The design of non-classical materials, such as multifunctional energetic materials and/or the synthesis of high pressure phases rely on the understanding of the mechanisms responsible for shock-induced reactions in powder mixtures. The critical reactant powder configurational changes and mechanical mixing processes necessary for reaction initiation have yet to be determined. Consequently, shock-induced reactions have only been observed in select material systems under certain conditions, and remain an uncontrolled phenomenon. Shock-induced reactions in nickel and aluminum powder mixtures are investigated in this work through the use of instrumented gas-gun experiments performing time-resolved pressure and shock velocity measurements to determine the pressure-volume (P-V) shock compressibility (Hugoniot) of the mixture, from which evidence of reaction is inferred through deviations from the inert shock response calculated on the basis of mixture theory. The role of particle size and morphology on non-diffusional mixing and chemical reactivity is explored by conducting similar tests on micron-scale powders of spherical and plate-like (flake) shape. Recovery experiments performed just below the reaction threshold provide information about the densification and mixing behavior between reactants. Discrete-component numerical simulations of the shock-compression of powder mixtures are performed to reveal the micromechanics of particle deformation, and mechanisms of mass-flow and mixing that can lead to the formation of reaction products. The results obtained from time-resolved measurements, recovery experiments, and numerical simulations are coupled to model the linkages between starting powder configuration, mechanically-driven mixing, and chemical reactivity. The knowledge gained from this investigation will lead to understanding of reaction mechanisms, and the control over reaction initiation threshold, time and exothermicity, in addition to characteristics of reaction products formed. The scientific understanding attained will advance the design and application of multifunctional materials for next generation energetic applications, and/or the synthesis of novel materials.
机译:非经典材料(例如多功能含能材料)的设计和/或高压相的合成取决于对粉末混合物中引起冲击反应的机理的理解。尚未确定反应引发所需的关键反应物粉末构型变化和机械混合过程。因此,仅在特定条件下在选定的材料系统中观察到了激振引起的反应,并且仍然是不受控制的现象。在这项工作中,通过使用仪器化的气枪实验进行时间分辨的压力和冲击速度测量,以确定混合物的压力体积(PV)冲击可压缩性(Hugoniot),研究了镍和铝粉混合物中的冲击诱导反应,通过与基于混合理论计算得出的惰性冲击响应的偏差来推断反应的证据。通过对球形和片状(片状)形状的微米级粉末进行类似的测试,探索了粒径和形态对非扩散混合和化学反应性的作用。刚好在反应阈值以下进行的回收实验可提供有关反应物之间的致密化和混合行为的信息。进行粉末混合物冲击压缩的离散分量数值模拟,以揭示颗粒变形的微观力学,以及可导致反应产物形成的质量流和混合机理。从时间分辨的测量,回收率实验和数值模拟获得的结果耦合在一起,可以对起始粉末构型,机械驱动混合和化学反应性之间的联系进行建模。从这项研究中获得的知识将有助于理解反应机理,以及控制反应起始阈值,时间和放热,以及形成的反应产物的特征。所获得的科学理解将促进多功能材料在下一代能量应用中的设计和应用,和/或新型材料的合成。

著录项

  • 作者

    Eakins, Daniel Edward.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 424 p.
  • 总页数 424
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号