首页> 外文学位 >Optical Properties of Nanoscale Bismuth Selenide and Its Heterocrystals.
【24h】

Optical Properties of Nanoscale Bismuth Selenide and Its Heterocrystals.

机译:纳米硒化铋及其杂晶的光学性质。

获取原文
获取原文并翻译 | 示例

摘要

Over the past 12 years since the groundbreaking work on graphene, the field of 2D layered materials has grown by leaps and bounds as more materials are theoretically predicted and experimentically verified. These materials and their unique electronic, optical, and mechanical properties have inspired the scientific community to explore and investigate novel, fundamental physical phenomena as well create and refine technological devices which leverage the host of unique benefits which these materials possess. In the past few years, this burgeoning field has heavily moved towards combining layers of various materials into novel heterostructures. These heterostructures are an exciting area of research because of the plethora of exciting possibilities and results which arise due to the large number of heterostructure combinations and configurations. Particularly, the research into the optical properties of these layered materials and their heterostructures under confinement provides another exciting avenue for developing optoelectric devices.;In this dissertation, I present work on the synthesis of Bi2Se 3 nanostructures via chemical vapor deposition (CVD) and the study of the optical properties of these nanostructures and their heterostructures with MoS2. The bulk of the current published work on Bi2Se 3 has focused on the exotic topological properties of its surface states, both interesting fundamental physics purposes as well as for studying avenues for spintronics. In contrast, the work presented here focuses on studying the optical properties of Bi2Se3 nanostructures and how these properties evolve when subjected to confinement. Specifically, the absorbance of singlecrystal Bi2Se3 with sizes tailored down to a few nanometers in diameter and a few quintuple layers (QLs) in thickness. We find a dramatically large bandgap, Eg ≥ 2.5 eV, in the smallest particles which is much higher than that seen in 1QL measurements taken with ARPES. Additionally, utilizing photoluminescence (PL) measurements of CVD-grown Bi 2Se3 nanoplates with few QL thickness and effective diameters in the tens of nanometers, Bi2Se3 nanoplatelets show a strong PL response with photon energies, Eph, in the ∼2.1-2.3 eV region. Annealing of these samples at 200?C for 4 hours increases the PL intensity by a factor of 2.4 to 3 for nanoscale Bi2Se3. Furthermore, this work investigates the synthesis of the novel Bi2Se3-MoS 2 heterocrystal that arises from epitaxial growth of Bi2Se 3 on MoS2 substrates. These heterocrystals consist of n layers of Bi2Se3 perfectly rotationally-aligned epitaxially with the monolayer MoS2 substrate. Investigation into these heterocystals produced results which include 100% PL-suppression of the MoS2 PL response, precisely tunable band-gap ranging from 1.1eV ? 0.75 eV, and a spectacular wide-band enhancement of photo-absorption over nearly the entire solar spectral wavelengths. Finally, a simple laser-treatment appears to dramatically reverse these changes, attributed to breakdown of the rotational congruency between the MoS2 and Bi2Se3 layers. These heterocrystals have immense potentials for novel physics and applications in nanoelectronics, optoelectronics and energy sciences at the atomically-thin scale.
机译:自从石墨烯方面的开创性工作以来的过去12年中,随着理论上预测和实验验证的材料越来越多,二维分层材料的领域得到了突飞猛进的发展。这些材料及其独特的电子,光学和机械性能激发了科学界探索和研究新颖的基本物理现象,并创造和完善了利用这些材料所具有的诸多独特益处的技术设备。在过去的几年中,这个新兴领域已朝着将各种材料的层组合成新颖的异质结构的方向发展。这些异质结构是令人兴奋的研究领域,因为大量的异质结构组合和配置产生了许多令人兴奋的可能性和结果。特别是,对这些层状材料及其异质结构在受限条件下的光学性质的研究为光电器件的开发提供了另一条令人振奋的途径。本文主要研究通过化学气相沉积(CVD)法合成Bi 2 Se 3纳米结构的方法。 MoS2研究这些纳米结构及其异质结构的光学性质。目前关于Bi2Se 3的已发表工作的大部分都集中在其表面态的奇异拓扑特性上,既有有趣的基本物理目的,也有研究自旋电子学的途径。相反,这里提出的工作着重于研究Bi2Se3纳米结构的光学性质,以及在受到限制时这些性质如何演化。具体而言,尺寸定制为直径几纳米,厚度几层(QL)的单晶Bi2Se3的吸收率。我们在最小的颗粒中发现了巨大的带隙,例如Eg≥2.5 eV,远高于使用ARPES进行的1QL测量所看到的带隙。此外,利用CVD生长的Bi 2Se3纳米板的光致发光(PL)测量,该Bi 2Se3纳米板的QL厚度很小,有效直径在几十纳米,因此在约2.1-2.3 eV的区域内显示了对光子能量Eph的强PL响应。这些样品在200°C下退火4小时,对于纳米级Bi2Se3,PL强度提高了2.4到3倍。此外,这项工作研究了新型的Bi2Se3-MoS 2异质晶体的合成,该晶体是由Bi2Se 3在MoS2衬底上外延生长引起的。这些异质晶体由n层Bi2Se3组成,它们与单层MoS2衬底完全外延旋转排列。对这些异质囊的研究产生的结果包括MoS2 PL响应的100%PL抑制,精确可调的带隙,范围为1.1eV? 0.75 eV,并且在几乎整个太阳光谱波长上都有惊人的宽带光吸收。最后,简单的激光处理似乎可以极大地扭转这些变化,这归因于MoS2和Bi2Se3层之间旋转一致性的破坏。这些杂晶对于原子稀薄的纳米物理学,纳米电子学,光电子学和能源科学的新应用和应用具有巨大的潜力。

著录项

  • 作者

    Vargas, Anthony.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Optics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号