首页> 外文学位 >Light extraction enhancement on gallium nitride based LEDs using laser assisted debonding and electrodeless photochemical etching.
【24h】

Light extraction enhancement on gallium nitride based LEDs using laser assisted debonding and electrodeless photochemical etching.

机译:使用激光辅助剥离和无电极光化学蚀刻增强基于氮化镓的LED的光提取。

获取原文
获取原文并翻译 | 示例

摘要

Detailed investigations of laser-debonded GaN-based light emitting diodes (LEDs) with InGaN/GaN multiple quantum wells (MQWs), grown by metalorganic chemical vapor deposition (MOCVD) on sapphire substrates, have been performed. The debonded surface was roughened by photo-electrodeless chemical (PEC) etching in a mixture of KOH and K2S2O8 solution, with an aim to improve the light extraction efficiency. The power for the laser-assisted debonding process has been optimized using the numerical thermal analysis technique and systematic experimental investigations. The data showed that as long as the laser energy density does not exceed the optimal debonding value, there is no degradation in the I-V characteristics and the brightness of the device. The structural and electrical properties of the GaN films and LEDs were analyzed using atomic force microscopy (AFM), transmission electron microscopy (TEM), the x-ray diffraction technique (XRD) and low-frequency noise measurement, before and after the laser debonding process.;Numerical thermal analysis using the heat transfer equation was employed to estimate the optimum laser debonding power and the temperature distribution within the GaN film. The calculated results showed that a threshold energy density of 400 mJcm-2 is required to cause thermal decomposition of GaN, and the thickness of the sacrificial layer was estimated to be 200 nm.;A cross-sectional TEM study revealed that laser debonding at the threshold fluence caused structural changes of the GaN material that are highly localized within a region of 180 nm from the GaN/sapphire interface, which is consistent with the prediction based on the thermal analysis. Detailed low-frequency noise characterizations were conducted to investigate the defect properties over the entire active area of the device. Experimental data on the voltage noise power spectra measured from the same device before and after laser debonding indicated no significant change in the magnitudes of the flicker noise over a wide temperature range.;For PEC etching, systematic variation of the KOH concentration was performed to roughen the debonded LED surface. Significant roughening was obtained under the etching conditions at 2M KOH for 30 minutes or more, forming hexagonal pyramid structures. The experimental results demonstrated strong dependencies of the luminous intensity of the device on the roughness of the debonded surface. A 60% improvement in the luminous intensity of the debonded and roughened LED was observed compared to the original on-sapphire device. This increase in the extraction efficiency is attributed to the reduction in the total internal reflection at the roughened GaN/air interface.
机译:已对具有通过蓝宝石衬底上的金属有机化学气相沉积(MOCVD)生长的InGaN / GaN多量子阱(MQW)的激光剥离GaN基发光二极管(LED)进行了详细研究。通过在KOH和K2S2O8溶液的混合物中进行无电极化学腐蚀(PEC)蚀刻使剥离的表面粗糙化,以提高光提取效率。使用数值热分析技术和系统的实验研究,优化了激光辅助剥离工艺的功率。数据表明,只要激光能量密度不超过最佳解键值,I-V特性和器件亮度都不会降低。在激光剥离之前和之后,使用原子力显微镜(AFM),透射电子显微镜(TEM),X射线衍射技术(XRD)和低频噪声测量分析了GaN膜和LED的结构和电性能。采用传热方程进行数值热分析,以估算最佳的激光剥离能力和GaN膜内的温度分布。计算结果表明,引起GaN热分解需要400 mJcm-2的阈值能量密度,并且牺牲层的厚度估计为200 nm。横截面TEM研究表明,激光在阈值通量引起的GaN材料结构变化高度局限在距GaN /蓝宝石界面180 nm的区域内,这与基于热分析的预测一致。进行了详细的低频噪声表征,以研究器件整个有源区域的缺陷特性。在激光剥离之前和之后在同一器件上测量的电压噪声功率谱的实验数据表明,在宽温度范围内,闪烁噪声的幅度没有明显变化。;对于PEC蚀刻,进行了KOH浓度的系统变化以使其变粗糙脱粘的LED表面。在2M KOH的蚀刻条件下30分钟或更长时间获得显着的粗糙化,形成六棱锥结构。实验结果表明,器件的发光强度与脱粘表面的粗糙度有很强的依赖性。与原始的蓝宝石器件相比,已脱粘和粗糙化的LED的发光强度提高了60%。提取效率的提高归因于在粗糙化的GaN /空气界面处的全内反射的减少。

著录项

  • 作者

    Chan, Chung Pui.;

  • 作者单位

    Hong Kong Polytechnic University (Hong Kong).;

  • 授予单位 Hong Kong Polytechnic University (Hong Kong).;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:40:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号