首页> 外文学位 >Exploring the microbe-energy interface: Geochemical reaction energetics and microbial diversity in a shallow marine hydrothermal system.
【24h】

Exploring the microbe-energy interface: Geochemical reaction energetics and microbial diversity in a shallow marine hydrothermal system.

机译:探索微生物-能量界面:浅水海洋热液系统中的地球化学反应能量和微生物多样性。

获取原文
获取原文并翻译 | 示例

摘要

Modern hydrothermal systems host an incredible diversity of predominantly thermophilic microorganisms. Most thermophiles are chemotrophs, gaining energy from chemical disequilibria that result from fluid mixing and water-rock reactions. The connection between life and energy is inescapable; however, the relationship between thermophile diversity and hydrothermal geochemistry is poorly understood. I use the shallow marine hydrothermal system of Vulcano Island, Italy, to study the interface between fluid chemistry, metabolic reaction energetics and the diversity of thermophilic microorganisms. Detailed geochemical analyses of hydrothermal fluids establish the geochemical variability in the shallow marine vents, geothermal wells and onshore seeps throughout the Vulcano hydrothermal system. First order geochemical analyses reveal large variations in temperature, pH, salinity and reduced aqueous species that define metabolic niches throughout the system. In situ chemical compositions are combined with standard state reaction properties to evaluate the Gibbs free energy of 234 potential metabolic reactions at 9 sites across the Vulcano system. Respiration and fermentation of carboxylic acids, neutral aldoses and amino acids are considered alongside chemolithotrophic reactions in the H-O-N-C-S-Fe system. Lithotrophic and heterotrophic respiration reactions yield up to 120 kJ/mol e- and are generally more favorable than fermentation reactions. Energy yields are highly dependent on the electron acceptor and variations in pH and ferrous iron concentrations result in large energetic variations across the sites investigated. Within this geochemical context, diverse archaeal and bacterial communities were identified throughout the system using standard molecular techniques. While culture-independent methods identified a number of organisms previously isolated from this system, most of the observed diversity belonged to phylogenetic groups with no cultured representatives, including the ancient Korarchaeota. Variations in microbial community structure among different sites are interpreted within the established geochemical framework and are attributed to variations in environmental conditions, as well as geochemical compositions and metabolic energetics. Potential metabolisms of the uncultured organisms can be inferred by comparing energy profiles among the sites. For the first time, complete geochemical analyses and reaction energetics are determined simultaneously with the phylogenetic distribution of thermophilic microorganisms and the relationships between geochemical variability and microbial diversity in hydrothermal ecosystems are explored.
机译:现代热液系统拥有大量嗜热微生物,种类繁多。大多数嗜热菌是化学趋化菌,它们是从化学不平衡中获得能量的,化学不平衡是由流体混合和水-岩石反应产生的。生命与能量之间的联系是不可避免的。然而,对嗜热菌多样性与热液地球化学之间的关系了解甚少。我使用意大利武尔卡诺岛的浅层海洋热液系统研究流体化学,代谢反应能和嗜热微生物多样性之间的界面。对热液的详细地球化学分析确定了整个Vulcano热液系统中浅海口,地热井和陆上渗漏的地球化学变异性。一阶地球化学分析显示温度,pH,盐度和减少的水物种的巨大变化,这些变化定义了整个系统的代谢壁ni。将原位化学成分与标准状态反应特性结合起来,以评估整个Vulcano系统中9个位置的234种潜在代谢反应的吉布斯自由能。在H-O-N-C-S-Fe系统中,考虑到羧酸,中性醛糖和氨基酸的呼吸和发酵以及化营养反应。锂养和异养呼吸反应的产量高达120 kJ / mol e-,通常比发酵反应更有利。能量产量高度依赖于电子受体,pH和亚铁浓度的变化会导致所研究位置的能量变化很大。在这种地球化学背景下,使用标准分子技术在整个系统中识别出各种古细菌和细菌群落。尽管不依赖文化的方法确定了先前从该系统中分离出的许多生物,但观察到的大多数多样性属于没有文化代表的种系群,包括古代的科拉奇奥塔。在既定的地球化学框架内解释了不同地点之间微生物群落结构的变化,这归因于环境条件以及地球化学组成和代谢能的变化。可以通过比较各个位点之间的能量分布来推断未培养生物的潜在代谢。首次,在确定嗜热微生物的系统发育分布的同时,确定了完整的地球化学分析和反应能,并探讨了热液生态系统中地球化学变异性与微生物多样性之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号